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Abstract

Thesis title: Gain-Scheduled Controller Design

Keywords: Gain-scheduled control; Lyapunov theory of stability; Guaran-
teed cost control; Bellman-Lyapunov function; LPV system; Robust control;
Input/output constraints

This thesis is devoted to controller synthesis, i.e. to finding a systematic
procedure to determine the optimal (sub-optimal) controller parameters which
guarantees the closed-loop stability and guaranteed cost for uncertain nonlinear
systems with considering input/output constraints, all this without on-line
optimization. The controller in this thesis is given in a feedback structure, that
is the controller has information about the system and uses this information
to influence the system. In this thesis the linear parameter-varying based
gain scheduling is investigated. The nonlinear system is transformed to a
linear parameter-varying system, which is used to design a controller, i.e. a
gain-scheduled controller with consideration of the objectives on the system.
The gain-scheduled controller synthesis in this thesis is based on the Lyapunov
theory of stability as well as on the Bellman-Lyapunov function. Several
forms of parameter dependent/quadratic Lyapunov functions are presented
and tested. To achieve performance quality a quadratic cost function and its
modifications known from LQ theory are used. In this thesis one can find also
an application of gain scheduling in switched and in model predictive control
with consideration of input/output constraints. The main results for controller
synthesis are in the form of bilinear matrix inequalities (BMI) and/or linear
matrix inequalities (LMI). For controller synthesis one can use a free and open
source BMI solver PenLab or LMI solvers LMILab or SeDuMi. The synthesis
can be done in a computationally tractable and systematic way, therefore the
linear parameter-varying based gain scheduling approach presented in this
thesis is a worthy competitor to other controller synthesis methods for nonlinear
systems.



Anotácia dizertačnej práce

Názov dizertačnej práce: Riadenie systémov metódou ”gain scheduling”

Kl’́učové slová: Riadenie s plánovaným zosilneńım; Lyapunová teória stability;
Riadenie s garantovanou kvalitou; Bellman-Lyapunová funkcia; LPV systémy;
Robustné riadenie; Vstupné/výstupné obmedzenia

Táto práca sa venuje problematike návrhu regulátora, tj. nájst’ systematický
postup na návrh optimálnych (suboptimálnych) parametrov regulátora, ktoré
garantujú stabilitu a kvalitu v uzavretej slučke, pri obmedzeńı vstupno-
výstupných hodnôt systémov pre nelineárne systémy s neurčitost’ami, a to
bez on-line optimalizácie. Uvedený regulátor má spätno-väzobnú riadiacu
štruktúru, čo znamená, že disponuje informáciami o danom systéme, ktoré
využ́ıva k jeho ovplyvneniu. Táto práca sa podrobneǰsie zaoberá s riadeńım
s plánovaným zosilneńım, a to na báze parametricky závislých lineárnych
systémov. Nelineárny systém je pretransformovaný na parametricky závislý
lineárny systém, čo sa následne využ́ıva na návrh regulátora, tj. regulátora
s plánovaným zosilneńım, s ohl’adom na požiadavky daného systému. Syntéza
regulátora s plánovaným zosilneńım sa uskutočńı na báze Lyapunovej teórie
stability s použit́ım Bellman-Lyapunovej funkcie, v rámci čoho sú prezentované
a testované rôzne typy kvadratickej a parametricky závislej Lyapunovej funkcie.
Pre dosiahnutie požadovanej kvality sa použ́ıva kvadratická účelová funkcia
známa z LQ riadenia, s rôznymi modifikáciami. V tejto práci nájdeme aj
aplikáciu riadenia s plánovaným zosilneńım v oblasti takzvaného preṕınacieho
riadenia (switched control), ako aj v rámci predikt́ıvneho riadenia (model
predictive control). Hlavné výsledky pre syntézu regulátorov sú v tvare
bilineárnych maticových nerovńıc (BMI) a/alebo linearných maticových
nerovńıc (LMI). Na návrh regulátorov môžeme použ́ıvat’ bezplatný a

”
open

source“ BMI solver PenLab alebo LMI solvre LMILab a SeDuMi. Uvedené
skutočnosti umožnia vykonat’ syntézu jednoduchým a systematickým spôsobom.
Riadenie s plánovaným zosilneńım na báze parametricky závislých lineárnych
systémov prezentované v tejto práci je vhodným konkurentom vo vzt’ahu k iným
metódam syntézy regulátorov pre nelineárne systémy.
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1 Introduction

This thesis is devoted to controller synthesis, i.e. to finding a systematic proced-
ure to determine the optimal (sub-optimal) controller parameters which guaran-
tees the closed-loop stability and guaranteed cost for uncertain nonlinear systems
with considering input/output constraints. In consideration of the objectives
stated for the system such as tracking a reference signal or keeping the plant
at a desired working point (operation point) and based on the knowledge of the
system (plant), the controller takes decisions. The controller in this thesis is
given in a feedback structure, which means that the controller has information
about the system and uses it to influence the system. A system with a feedback
controller is said to be a closed-loop system.

To design a controller which satisfies the objectives we need an adequately
accurate model of the physical system. Nevertheless, real plants are hard to
describe exactly. Alternatively, the designed controller must handle the cases
when the state of the real plant differs from what is observed by the model.
A controller that is able to handle model uncertainties and/or disturbances is
said to be robust, and the theory dealing with these issues is said to be robust
control.

The robust control theory is well established for linear systems but almost all
real processes are more or less nonlinear. If the plant operating region is small,
one can use the robust control approaches to design a linear robust controller,
where the nonlinearities are treated as model uncertainties. However, for real
nonlinear processes, where the operating region is large, the above mentioned
controller synthesis may be inapplicable because the linear robust controller may
not be able to meet the performance specifications. For this reason the controller
design for nonlinear systems is nowadays a very determinative and important
field of research.

Gain scheduling is one of the most common used controller design approaches
for nonlinear systems and has a wide range of use in industrial applications.
Many of the early articles were associated with flight control and aerospace.
Then, gradually, this approach has been used almost everywhere in control en-
gineering, which was greatly advanced with the introduction of LPV systems.

Linear parameter-varying systems are time-varying plants whose state space
matrices are fixed functions of some vector of varying parameters θ(t). They were
introduced first by Jeff S. Shamma in 1988 to model gain scheduling. Today the
LPV paradigm has become a standard formalism in systems and controls with
lots of researches and articles devoted to analysis, controller design and system
identification of these models.

This thesis deals with linear parameter-varying based gain scheduling, which
means that the nonlinear system is transformed to a linear parameter-varying
system, which is used to design a controller, i.e. gain-scheduled controller. The
problem formulation is close to the linear system counterpart, therefore using
LPV models to design a controller has potential computational advantages over
other controller synthesis methods for nonlinear systems. Not to mention that
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the LPV based gain scheduling approaches comes with a theoretical validity
because the closed-loop system can meet certain specifications. Nonetheless,
following the literature it is ascertainable that there are still many unsolved
problems. This thesis is devoted to some of these problems.

1.1 Goals & Objectives

As already mentioned, there are many unsolved problems. Therefore, it is ne-
cessary to find new and novel controller design approaches. If one wants to
summarize the main goal of this thesis in one sentence, then you would read:
The main goal is to find a controller design approach for uncertain nonlinear
systems, which guarantees the closed-loop stability and guaranteed cost with
considering input/output constraints, all this without on-line optimization and
need of high-performance industrial computers. That is why we set the following
goals:

• Suggest a gain-scheduled PID controller design approach with guaranteed
cost in continuous and discrete time state space using BMI

• Suggest a robust gain-scheduled PID controller design approach with guar-
anteed cost and parameter dependent quadratic stability in state space
using BMI

• Suggest a variable weighting gain-scheduled approach

• Convert some BMI controller design approaches to LMI

• Suggest a switched and model predictive gain-scheduled method

• Suggest a gain-scheduled controller design approach with input/output
constraints

• Apply methods to relevant processes

1.2 Outline

The sequel of this summary of dissertation thesis is organized as follows. In
Section 2 one can find a preliminary chapter, where with review of the literature
a brief overview of linear parameter-varying systems and gain scheduling are
presented. In Section 3-5 one can find an overview of selected research results
which covers the main research results obtained within the last 2.5 years . Finally,
in Section 6, following the selected results from selected papers, some concluding
remarks and suggestions for future research are given.

2 Preliminary pages

In this section preliminaries of linear parameter-varying systems as well as gain
scheduling are introduced. This section is intended to highlight the properties
and give a short background to the tools used in the appended papers.
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2.1 Linear parameter-varying systems

Linear parameter-varying systems are time-varying plants whose state space
matrices are fixed functions of some vector of varying parameters θ(t). It was
introduced first by Jeff S. Shamma in 1988 [1] to model gain scheduling. ”Today
LPV paradigm has become a standard formalism in systems and controls with
lot of researches and articles devoted to analysis, controller design and system
identification of these models”, as Shamma wrote in [2]. This section deals with
LPV models and presents analytical approaches for LPV systems.

2.1.1 Introduction to LPV systems

Linear parameter-varying systems are time-varying plants whose state space
matrices are fixed functions of some vector of varying parameters θ(t). Linear
parameter-varying (LPV) systems have the following interpretations:

– they can be viewed as linear time invariant (LTI) plants subject to time-
varying known parameters θ(t) ∈ 〈θ, θ〉,

– they can be models of linear time-varying plants,

– they can be LTI plant models resulting from linearization of the nonlin-
ear plants along trajectories of the parameter θ(t) ∈ 〈θ, θ〉 which can be
measured.

For the first and third class of systems, parameter θ can be exploited for the
control strategy to increase the performance of closed-loop systems. Hence, in
this thesis the following LPV system will be used:

ẋ = A(θ(t))x+B(θ(t))u

y = Cx
(1)

where for the affine case

A(θ(t)) = A0 +A1θ1(t) + . . .+Apθp(t)

B(θ(t)) = B0 +B1θ1(t) + . . .+Bpθp(t)

and x ∈ Rn is the state, u ∈ Rm is a control input, y ∈ Rl is the measure-
ment output vector, A0, B0, Ai, Bi, i = 1, 2 . . . , p, C are constant matrices of

appropriate dimension, θ(t) ∈ 〈θ, θ〉 ∈ Ω and θ̇(t) ∈ 〈θ̇, θ̇〉 ∈ Ωt are vectors of
time-varying plant parameters which belong to the known boundaries.

The LPV paradigm was introduced by Jeff. S. Shamma in his Ph.D. thesis [1]
for the analysis of gain-scheduled controller design. The authors in early works
(see [1, 3, 4, 5, 6, 7, 8] and surveys [9, 10]) in gain scheduling the LPV system
framework called as the golden mean between linear and nonlinear dynamics,
because ”the LPV system is an indexed collection of linear systems, in which
the indexing parameter is exogenous, i.e., independent of the state.”(wrote J. S.
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Shamma in his Ph.D. thesis [1]). In gain scheduling, this parameter is often a
function of the state, and hence endogenous

ẋ = A(z)x+B(z)u

y = C(z)x

z = h(x)

(2)

2.1.2 Application of the LPV systems

Since the first publication devoted to LPV systems, the LPV paradigm has been
used in several fields in control engineering including the modeling and con-
trol design. Traditionally the gain scheduling was the primary design approach
for flight control and consequently many of the first articles and papers which
applied and improved the LPV framework were associated with flight control.
Afterwards continuously many papers and articles have appeared which are us-
ing LPV paradigm in several application areas such as flight control and missile
autopilots [11, 12, 13, 14, 15, 16, 17], aeroelasticity [18, 19, 20, 21], magnetic
bearings [22, 23, 24, 25], automotive bearings [26, 27, 28], energy and power
systems [29, 30, 31, 32, 33, 34], turbofan engines [35, 36, 37, 38], microgravity
[39, 40, 41], diabetes control [42, 43, 44], anesthesia delivery [45], IC manufac-
turing [46].

Due to the success of LPV paradigm in 2012 for the twentieth anniversary
of the invention of LPV paradigm a gift edition book was published by Javad
Mohammadpour and Carsten W. Scherer Editors at Springer [2] which is fully
devoted to LPV systems.

2.2 Gain scheduling

The robust control theory is well established for linear systems but almost all
real processes are more or less nonlinear. If the plant operating region is small,
one can use the robust control approaches to design a linear robust controller
where the nonlinearities are treated as model uncertainties. However, for real
nonlinear processes, where the operating region is large, the above mentioned
controller synthesis may be inapplicable. For this reason the controller design
for nonlinear systems is nowadays a very determinative and important field of
research.

Gain scheduling is one of the most common used controller design approaches
for nonlinear systems and has a wide range of use in industrial applications. In
this section the main principles, several classical approaches and finally the linear
parameter-varying based version of gain scheduling are presented and investig-
ated.
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2.2.1 Introduction to gain scheduling

In literature a lot of term are meant under gain scheduling (GS). For example
switching or blending of gain values of controllers or models, switching or blend-
ing of complete controllers or models or adapt (schedule) controller parameters
or model parameters according to different operating conditions. A common
feature is the sense of decomposing nonlinear design problems into linear or
nonlinear sub-problems. The main difference lies in the realization.

Consequently gain scheduling may be classified in different way

• According to decomposition

1. GS methods decomposing nonlinear design problems into linear sub-
problems

2. GS methods decomposing nonlinear design problems into nonlinear
(affine) sub-problems

• According to signal processing

1. Continuous gain scheduling methods

2. Discrete gain scheduling methods

3. hybrid or switched gain scheduling methods

• According to main approaches

1. Classical (linearization based) gain scheduling

2. LFT based GS synthesis

3. LPV based GS synthesis

4. Fuzzy GS techniques

5. Other modern GS techniques

2.2.2 History of gain scheduling

The ferret in the history of gain scheduling appears in the 1960s but a similar
simpler technique was used in World War II toat control the rockets V2 (switch-
ing controllers based on measured data). It is not surprising therefore that gain
scheduling as a concept or notion firstly appear in flight control and later in
aerospace. Leith and Leithead in their survey [9] and likewise also Rugh and
Shamma in their survey paper [10] considered the first appearance of GS from
the 1960s. Rugh stated in his survey that ”Gain control” does appear in the 25th
Anniversary Index (1956–1981) published in 1981 but only one of the five listed
papers is relevant to gain scheduling. Also Automatica lists gain scheduling as
a subject in its 1963–1995 cumulative index published in 1995. Of the four cita-
tions given, only one dated earlier than 1990 [1]. It can be stated that increased
attention to gain scheduling appeared after introducing the LPV paradigm by
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Jeff. S. Shamma (1988). This is partly understandable because LPV paradigm
allowed to describe nonlinear system as a family of linear systems and hence
investigate the stability of these systems. Figure 1 shows the major dates with
remarks in a time-line of gain scheduling.

PresentPast

1960 1969 1981 1988

1991

1943

Fist gain-scheduling 

like controllers;

II. World War

First appear of notion gain-

scheduling; application in 

flight and aerospace

Quiet years;

only few publications 

devoted to gain-scheduling

"Gain control" 

does appear in

the 25th 

Anniversary 

Index

Jeff. S. Shamma 

introduced LPV 

systmes

Rugh and Shamma 

and also Leith and  

Leithead survay 

papers on gain-

scheduling;

Increased interest in 

gain-scheduling

Gain-scheduling is one 

of the most popular 

approaches to nonlinear 

control design

2010

Figure 1: The time-line of gain scheduling

2.2.3 Application of gain scheduling

As already noted, traditionally the gain scheduling was the primary design ap-
proach to flight control and, consequently, many of the first articles and papers
were associated with flight control [47, 48, 49, 50, 51, 52, 53, 54] and aerospace
[55, 56, 57]. Then gradually GS has been used almost everywhere in control
engineering which was greatly advanced with the introduction of LPV systems.

The second big bang in the history of gain scheduling was the advent of fuzzy
gain scheduling. Today, every second paper that appears under gain scheduling
is devoted to fuzzy gain scheduling. Due to this wide range of gain-schedule
approaches, gain scheduling is now used in several fields in practice. For example
in power systems the gain scheduling enjoyed exceptional success in control of
wind turbines [58, 59, 60, 61, 62, 63, 64]. But beside all this, some papers are
devoted to hydro turbines [65, 66], gas turbines [67], power system stabilizers [68]
and generators [69]. Many papers in gain scheduling are devoted to magnetic
bearings [70, 71, 72, 73, 74, 75] but we can find some papers devoted to also to
microgravity [76], turbofan engine [77] and diabetes control [78].

2.2.4 Summary of gain scheduling

The main advantage of classical gain scheduling is that it inherits the benefits
of linear controller design methods, including intuitive classical design tools and
time as well as frequency domain performance specifications. PID control is
the most used control strategy in industrial applications due to its relatively
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simple and intuitive design, hence this is a major advantage with respect to other
nonlinear controller design syntheses. The approach thus enables the design of
low computational effort controllers. Conceptually, gain scheduling involves an
intuitive simplification of the problem into parallel decompositions of the total
system.

LPV and LFT synthesis require a true LPV model as a basis. In general
however, gain scheduling may be employed in the absence of an analytical model,
e.g. on the basis of a collection of plant linearizations. Consequently, controller
design based on a whitebox as well as a blackbox and even data-based ’modeling’
is possible. If the possibility of fast parameter variations is not addressed in the
design process, guaranteed properties of the overall gain-scheduled design cannot
be established. The main advantage of LPV and LFT control synthesis is that
they do account for parameter variations in the controller design, which results
in a priori guarantees regarding stability and performance specifications. The
main drawback of LPV and LFT control synthesis involves conservativeness,
which has to be introduced to enable solving the resulting LMIs. As a result
of that, current LPV and LFT syntheses comprise specific extensions of robust
control techniques rather than true generalizations. However, current and future
research still provides and will provide less conservative solutions.

The main drawback of fuzzy gain scheduling involves the lack of a relation
between the dynamic characteristics of the original nonlinear model and the
fuzzy model. Even locally, the dynamics of the fuzzy model can not be related
to the original nonlinear model. Fuzzy gain scheduling techniques may involve
classical gain scheduling alike as well as LPV techniques.

The analysis and theorems stated herein are presented in an informal manner.
Technical details may (and should) be found in the associated references.

2.3 Discussion

This thesis is devoted to gain scheduling within this to LPV based gain schedul-
ing because in our opinion the biggest potential between gain scheduling ap-
proaches is in the LPV based gain scheduling. Despite this, we described all
main historical approaches to gain scheduling as classical gain scheduling, LFT
based gain scheduling and novel fuzzy gain scheduling.

As we mentioned LPV based gain scheduling appear in 1988 when Jeff. S.
Shamma introduced the LPV paradigm in his Ph.D. thesis [1]. Today LPV
paradigm has become a standard formalism in systems and controls with lots of
researches and articles devoted to analysis, controller design and system identific-
ation of these models. Due to this nowadays the LPV gain scheduling belongs to
the most popular approaches to nonlinear control design. But, as we mentioned
in Introduction, there are still a lot of unsolved problems. Browsing through
literature we cannot find any general LPV based gain-scheduled approach which
will involve guaranteed cost and affine quadratic stability. In addition there are
very rudimentary approaches in switched and predictive control not to mention
the robust and discrete design approaches.
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Currently, nowhere it is solved how to affect the performance quality sep-
arately in each working point when direct LPV controller approach is used.
Furthermore, there are only few papers devoted to output feedbacks and they
also not use fixed order output feedbacks like PID/PSD controllers.

Most of the papers devoted to LPV based gain scheduling convert the stability
conditions into LMI problems. But currently we cannot find a general LMI
approach with guaranteed stability and guaranteed cost. Furthermore, nowhere
it is solved how to consider input/output constraints without need of on-line
optimization.

Among other things, to find a solution for some of these unsolved problems
(deficiencies) were the main goals of the research which is summarized in this
thesis.

3 Robust Gain-Scheduled PID Controller Design for Un-
certain LPV Systems

A novel methodology is proposed for robust gain-scheduled PID controller design
for uncertain LPV systems. The proposed design procedure is based on the
parameter-dependent quadratic stability approach. A new uncertain LPV sys-
tem model has been introduced in this paper. To access the performance quality,
the approach of a parameter-varying guaranteed cost is used which allowed to
reach the desired performance for different working points. Several forms of para-
meter dependent quadratic stability are presented which withstand arbitrarily
fast model parameter variation or/and arbitrarily fast gain-scheduled parameter
variation.

3.1 Problem formulation and preliminaries

Consider a continuous-time linear parameter-varying (LPV) uncertain system in
the form

ẋ = A(ξ, θ)x+B(ξ, θ)u

y = Cx

ẏd = Cdẋ

(3)

where linear parameter-varying matrices

A(ξ, θ) = A0(ξ) +

s∑
i=1

Ai(ξ)θi ∈ Rn×n

B(ξ, θ) = B0(ξ) +

s∑
i=1

Bi(ξ)θi ∈ Rn×m
(4)

x ∈ Rn, u ∈ Rm, y ∈ Rl denote the state, control input and controlled output,
respectively. Matrices Ai(ξ), Bi(ξ), i = 0, 1, 2, . . . , s belong to the convex set:
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a polytope with N vertices that can be formally defined as

Ω =

{
Ai(ξ), Bi(ξ) =

N∑
j=1

(Aij , Bij) ξj

}
,

i = 0, 1, 2, . . . , s,

N∑
j=1

ξj = 1, ξj ≥ 0

(5)

where s is the number of scheduled parameters; ξj , j = 1, 2, . . . , N are constant
or possibly time-varying but unknown parameters; matrices Aij , Bij , C, Cd are
constant matrices of corresponding dimensions, where Cd is the output matrix
for D part of the controller. θ ∈ Rs is a vector of known (measurable) constant or
possibly time-varying scheduled parameters. Assume that both lower and upper
bounds are available. Specifically

1. Each parameter θi, i = 1, 2, . . . , s ranges between known extremal values

θ ∈ Ωs =
{
θ ∈ Rs : θi ∈ 〈θi, θi〉, i = 1, 2, . . . , s

}
(6)

2. The rate of variation θ̇i is well defined at all times and satisfies

θ̇ ∈ Ωt =
{
θ̇i ∈ Rs : θ̇i ∈ 〈θ̇i, θ̇i〉, i = 1, 2, . . . , s

}
(7)

Note that system (3), (4), (5) consists of two type of vertices. The first one is
due to the gain-scheduled parameters θ with T = 2s vertices – θ vertices, and the
second set of vertices are due to uncertainties of the system – N , ξ vertices. For
robust gain-scheduled ”I” part controller design the states of system (3) need to
be extended in such a way that a static output feedback control algorithm can
provide proportional (P) and integral (I) parts of the designed controller. For
more details see [79]. Assume that system (3) allows PI controller design with a
static output feedback.

To access the system performance, we consider an original scheduling quad-
ratic cost function

J =

∫ ∞
0

J(t)dt =

∫ ∞
0

(
xTQ(θ)x+ uTRu+ ẋTS(θ)ẋ

)
dt (8)

where

Q(θ) = Q0 +

s∑
i=1

Qiθi, S(θ) = S0 +

s∑
i=1

Siθi

The feedback control law is considered in the form

u = F (θ)y + Fd(θ)ẏd (9)

where

F (θ) = F0 +

s∑
i=1

Fiθi, Fd(θ) = Fd0 +

s∑
i=1

Fdiθi

9



Matrices Fi, Fdi, i = 0, 1, 2, . . . , s are the static output PI part and the out-
put derivative feedback gain-scheduled controller. The structure of the above
matrices can be prescribed.

The respective closed-loop system is then

Md(ξ, θ)ẋ = Ac(ξ, θ)x (10)

where

Md(ξ, θ) = I −B(ξ, θ)Fd(θ)Cd

Ac(ξ, θ) = A(ξ, θ) +B(ξ, θ)F (θ)C

Let as recall some results about an optimal control of time-varying systems [80].

Lemma 1. Let there exists a scalar positive definite function V (x, t) such that
limt→∞ V (x, t) = 0 which satisfies

min
u∈Ωu

{
δV

δx
Ac(θ) +

δV

δt
+ J(t)

}
= 0 (11)

From (11) obtained control algorithm u = u∗(x, t) ensure the closed-loop stability
and on the solution of (3) optimal value of cost function as J∗ = J(x0, t0) =
V (x(0), t0).

Eq. (11) is known as Bellman-Lyapunov equation and function V (x, t) which
satisfies to (11) is Lyapunov function. For a given concrete structure of Lyapunov
function the optimal control algorithm may reduces from ”if and only if ” to ”if ”
and for switched systems, robust control, gain-scheduled control and so on to
guaranteed cost.

Definition 1. Consider a stable closed-loop system (10). If there exists a
control law u (9) which satisfies (13) and a positive scalar J∗ such that the
value of closed-loop cost function (8) J satisfies J < J∗ for all θ ∈ Ωs and ξj ,
j = 1, 2 . . . , N satisfying (5), then J∗ is said to be a guaranteed cost and u is
said to be a guaranteed cost control law for system (10).

Let us recall some parameter dependent stability results which provide basic
further developments.

Definition 2. Closed-loop system (10) is parameter dependent quadratically
stable in the convex domain Ω given by (5) for all θ ∈ Ωs and θ̇ ∈ Ωt if and
only if there exists a positive definite parameter dependent Lyapunov function
V (ξ, θ) such that the time derivative of Lyapunov function with respect to (10)
is

dV (ξ, θ, t)

dt
< 0 (12)

Lemma 2. Consider the closed-loop system (10). Control algorithm (9) is the
guaranteed cost control law if and only if there exists a parameter dependent
Lyapunov function V (ξ, θ) such that the following condition holds [80]

Be(ξ, θ) = min
u

(
dV (ξ, θ, t)

dt
+ J(t)

)
≤ 0 (13)
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Uncertain closed-loop system (10) conforming to Lemma 2 is called robust
parameter dependent quadratically stable with guaranteed cost.

We proceed with the notion of multi-convexity of a scalar quadratic function
[81].

Lemma 3. Consider a scalar quadratic function of θ ∈ Rs

f(θ) = α0 +

s∑
i=1

αiθi +

s∑
i=1

s∑
j>i

βijθiθj +

s∑
i=1

γiθ
2
i (14)

and assume that if f(θ) is multiconvex that is

∂2f

∂θ2
i

= 2γi ≥ 0, i = 1, 2, . . . , s

Then f(θ) is negative in the hyper rectangle (6) if and only if it takes negative
values at the vertices of (6), that is if and only if f(θ) < 0 for all vertices of
the set given by (6). For decrease the conservatism of Lemma 3 the approach
proposed in [81] can be used.

In this paragraph for uncertain gain scheduling system (3) we have proposed
to use a model uncertainty in the form of a convex set with N vertices defined
by (5). Furthermore, we consider the new type of performance (8) to obtain the
closed-loop system guaranteed cost.

3.2 Main Results

This section formulates the theoretical approach to robust PID gain-scheduled
controller design for polytopic system (3), (4), (5) which ensures closed-loop
system parameter dependent quadratic stability and a guaranteed cost for all
gain scheduling parameters θ ∈ Ωs, and θ̇ ∈ Ωt. The main result on robust
stability for the gain-scheduled control system is given in the next theorem.

Theorem 1. The closed-loop system (10) is robust parameter dependent quad-
ratically stable with a guaranteed cost if there exist positive definite matrix
P (ξ, θ) ∈ Rn×n, matrices N1, N2 ∈ Rn×n positive definite (semidefinite)
matrices Q(θ), R, S(θ) and gain-scheduled controller (9) such that

a)

L(ξ, θ) = W0(ξ) +
s∑
i=1

Wi(ξ)θi+

+

s∑
i=1

s∑
j>i

Wij(ξ)θiθj +

s∑
i=1

Wiiθ
2
i < 0

(15)

b)
Wii(ξ) ≥ 0, θ ∈ Ωs, i = 1, 2, . . . , s (16)
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where we consider parameter dependent Lyapunov matrix

P (ξ, θ) = P0(ξ) +

s∑
i=1

Pi(ξ)θi > 0 (17)

the above matrices (15) and (16) are given as follows:

W0(ξ) =

[
W110(ξ) W120(ξ)
∗ W220(ξ)

]
W110(ξ) = S0 + CTd Fd

T
0 RFd0Cd

+NT
1 (I −B0(ξ)Fd0Cd)

+ (I −B0(ξ)Fd0Cd)
T N1

W120(ξ) = −NT
1 (A0(ξ) +B0(ξ)F0C)

+ (I −B0(ξ)Fd0Cd)
T N2 + P0(ξ)

+CTd Fd
T
0 RF0C

W220(ξ) = −NT
2 (A0(ξ) +B0(ξ)F0C)

− (A0(ξ) +B0(ξ)F0C)T N2 +Q0

+CTFT0 RF0C +
∑s
j=1 Pj(ξ)θ̇i

Wi(ξ) =

[
W11i(ξ) W12i(ξ)
∗ W22i(ξ)

]
W11i(ξ) = Si + CTd

(
Fd

T
0 RFdi + Fd

T
i RFd0

)
Cd

−NT
1 (B0(ξ)Fdi +Bi(ξ)Fd0)Cd

− [(B0(ξ)Fdi +Bi(ξ)Fd0)Cd]
T N1

W12i(ξ) = −NT
1 (Ai(ξ) +B0(ξ)Fi +Bi(ξ)F0)C

− (Bi(ξ)Fd0Cd)
T N2 + Pi(ξ)

+CTd
(
Fd

T
i RF0 + Fd

T
0 RFi

)
C

W22i(ξ) = −NT
2 (Ai(ξ) + (B0(ξ)Fi +Bi(ξ)F0)C)

− [Ai(ξ) + (B0(ξ)Fi +Bi(ξ)F0)C]T N2

+Qi + CT
(
FT0 RFi + FTi RF0

)
C

Wij(ξ) =

[
W11ij(ξ) W12ij(ξ)
∗ W22ij(ξ)

]
W11ij(ξ) = CTd

(
Fd

T
i RFdj + Fd

T
j RFdi

)
Cd

−NT
1 (Bi(ξ)Fdj +Bj(ξ)Fdi)Cd

−CTd (Bi(ξ)Fdj +Bj(ξ)Fdi)
T N1

W12ij(ξ) = −NT
1 (Bi(ξ)Fj +Bj(ξ)Fi)C

−CTd (Bi(ξ)Fdj +Bj(ξ)Fdi)
T N2

+CTd
(
Fd

T
i RFj + Fd

T
j RFi

)
C

W22ij(ξ) = −NT
2 (Bi(ξ)Fj +Bj(ξ)Fi)C

−CT (Bi(ξ)Fj +Bj(ξ)Fi)
T N2

+CT
(
FTi RFj + FTj RFi

)
C

Wii(ξ) =

[
W11ii(ξ) W12ii(ξ)
∗ W22ii(ξ)

]
W11ii(ξ) = CTd Fd

T
i RFdiCd −NT

1 Bi(ξ)FdiCd
−CTd FdTi Bi(ξ)TN1
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W12ii(ξ) = −NT
1 Bi(ξ)FiC − CTd FdTi BTi (ξ)N2

+CTd Fd
T
i RFiC

W22ii(ξ) = −NT
2 Bi(ξ)FiC − CTFTi BTi (ξ)N2

+CTFTi RFiC

The proof is based on Lemma 2 and 3. The time derivative of the Lyapunov
function V (ξ, θ) = xTP (ξ, θ)x is

dV (ξ, θ)

dt
=
[
ẋT xT

] [ 0 P (ξ, θ)

P (ξ, θ) P (ξ, θ̇)

] [
ẋ
x

]
(18)

where

P (ξ, θ̇) =

s∑
i=1

Pi(ξ)θ̇

To isolate two matrices (system and Lyapunov) introducing matrices N1, N2 in
the following way

[2N1ẋ+ 2N2x]T [Md(ξθ)ẋ−Ac(ξ, θ)] = 0 (19)

and substituting (19), (18), J(t) (8) and control law (9) to (13), after some
manipulation one obtains

Be(ξ, θ) =
[
ẋT xT

] [ W11(ξ) W12(ξ)
W12

T (ξ) W22(ξ)

] [
ẋ
x

]
(20)

where
W11 = S(θ) + CTd F

T
d (θ)RFd(θ)Cd +NT

1 Md(ξ, θ)
+MT

d (ξ, θ)N1

W12 = −NT
1 Ac(ξ, θ) +MT

d (ξ, θ)N2 + P (ξ, θ)
+CTd F

T
d (θ)RF (θ)C

W22 = −NT
2 Ac(ξ, θ)−ATc (ξ, θ)N2 +Q(θ)

+CTFT (θ)RF (θ)C + P (ξ, θ̇)

Eq. (20) immediately implies (15), which proves the sufficient conditions of
Theorem 1.

Eq.’s (15) and (16) are linear with respect to uncertain parameter ξj , j =
1, 2, . . . , N , therefore (15) and (16) have to hold for all j = 1, 2, . . . , N . For the
known gain-scheduled controller parameters, inequalities (15) and (16) reduce
to LMI, for gain-scheduled controller synthesis problem (15) (16) are BMI.

Remark 1. Theorem 1 can be used for a quadratic stability test, where
Lyapuunov function matrices (matrix) are either independent of parameter ξj ,
j = 1, 2, . . . , N or parameter θi, i = 1, 2, . . . , s or both as listed below.

1. Quadratic stability with respect to model parameter variation. For this
case one has P (θ) = P0 +

∑s
i=1 Piθi. This Lyapunov function should

withstand arbitrarily fast model parameter variation in the convex set (5)
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2. Quadratic stability with respect to gain-scheduled parameters θ. For this
case Pi → 0, i = 1, 2 . . . , s and Lyapunov matrix is P (ξ, θ) = P0(ξ).
This Lyapunov function should withstand arbitrarily fast θ parameter vari-
ations.

3. Quadratic stability with respect to both ξ and θ parameters. Lyapunov
matrix is P (ξ, θ) = P0 and it should withstands arbitrarily fast model and
gain-scheduled parameter variation.

4 Robust Switched Controller Design for Nonlinear Con-
tinuous Systems

A novel approach is presented to robust switched controller design for nonlin-
ear continuous-time systems under an arbitrary switching signal using the gain
scheduling approach. The proposed design procedure is based on the robust
multi parameter dependent quadratic stability condition. The obtained switched
controller design procedure for nonlinear continuous-time systems is in the bi-
linear matrix inequality form (BMI). In the paper several forms of parameter
dependent/quadratic Lyapunov functions are proposed.

4.1 Problem statement and preliminaries

4.1.1 Uncertain LPV plant model for switched systems

Consider family of nonlinear switched systems

ż = fσ(z, v, w) σ ∈ S = {1, 2, . . . , N}
y = h(z)

(21)

where z ∈ Rn is the state, the input v ∈ Rm, the output y ∈ Rl, exogenous input
w ∈ Rk which captures parametric dependence of the plant (21) on exogenous
input. The arbitrary switching algorithm σ ∈ S is a piecewise constant, right
continuous function which specifies at each time the index of the active system,
[82]. Assume that f(.) is locally Lipschitz for every σ ∈ S. Consider that
the number of equilibrium points for each switching modes is equal to p, that
is for each mode σ ∈ S the nonlinear system can be replaced by a family of
p linearized plant. For more details how to obtain the gain-scheduled plant
model see excellent surveys [9], [10]. To receive the model uncertainty of the
gain-scheduled plant it is necessary to obtain other family of linearized plant
models around the p equilibrium points. Finally, one obtains the gain-scheduled
uncertain plant model in the form

ẋ = Aσ(ξ, θ)x+Bσ(ξ, θ)u σ ∈ S
y = Cx

(22)

where x = z − ze, u = v − ve, y = y − ye, (ze, ve, ye) define the equilibrium
family for plant (21). Assume, that for i − th equilibrium point one obtain the
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sets x ∈ Xi, u ∈ Ui, y ∈ Yi, i = 1, 2, . . . , p. Summarizing above sets we get
x ∈ X =

⋃p
i=1 Xi, u ∈ U =

⋃p
i=1 Ui, y ∈ Y =

⋃p
i=1 Yi.

Aσ(ξ, θ) = Aσ0(ξ) +

p∑
j=1

Aσj(ξ)θj ∈ Rn×n

Bσ(ξ, θ) = Bσ0(ξ) +

p∑
j=1

Bσj(ξ)θj ∈ Rn×m
(23)

Matrices Aσj(ξ), Bσj(ξ), j = 0, 1, 2, . . . , p belong to the convex set a polytope
with K vertices that can formally defined as

Ωσ =

{
Aσj(ξ), Bσj(ξ) =

K∑
i=1

(Aσij , Bσij)ξi

j = 0, 1, 2, 3, . . . , p,

K∑
i=1

ξi = 1, ξi ≥ 0, ξi ∈ Ωξ

} (24)

where ξi, i = 1, 2, . . . ,K are constant or possible time-varying but unknown
parameters, Aσij , Bσij , C are constant matrices of corresponding dimensions,
θ ∈ Rp is a vector of known constant or time-varying gain-scheduled parameter.
Assume that both lower and upper bounds are available, that is

θ ∈ Ωs = {θ ∈ Rp : θj ∈ 〈θj , θj〉}

θ̇ ∈ Ωt = {θ̇ ∈ Rp : θ̇j ∈ 〈θ̇j , θ̇j〉}
(25)

4.1.2 Problem formulation

For each plant mode consider the uncertain gain-scheduled LPV plant model in
the form (22),(23) and (24)

ẋ =

(
Aσ0(ξ) +

p∑
j=1

Aσj(ξ)θj

)
x+

(
Bσ0(ξ) +

p∑
j=1

Bσj(ξ)θj

)
u

y = Cx

(26)

For a robust gain-scheduled I part controller design, the states x of (26) need
to be extended in such a way that a static output feedback control algorithm
can provide proportional (P) and integral (I) parts of the designed controller, for
more detail see [79]. Assume that system (26) allows PI controller design with
a static output feedback. The feedback control law is considered in the form

u = Fσ(θ)y =

(
Fσ0 +

p∑
j=1

Fσjθj

)
Cx (27)

15



where Fσ(θ) is the static output feedback gain-scheduled controller for mode σ.
The closed loop system is

ẋ = Aσc(ξ, θ, α)x (28)

where
Aσc(ξ, θ, α) =

N∑
σ=1

(
Aσ(ξ, θ) +Bσ(ξ, θ)Fσ(θ)C

)
ασ =

N∑
σ=1

Aσ(ξ, θ)ασ

αT = [α1, α2, ...αN ],

N∑
σ=1

ασ = 1,

N∑
σ=1

α̇σ = 0

αj = 1 when σj is active plant mode, else αj = 0. Assume α ∈ Ωα, α̇ ∈ Ωd.
To access the system performance, we consider an original weighted scheduled
quadratic cost function

J =

∫ ∞
t=0

J(t)dt (29)

where J(t) = xTQ(θ)x+ uTRu, and

Q(θ) = Q0 +

p∑
j=1

Qjθj , Qj ≥ 0, R > 0

.

Definition 3. Consider a stable closed loop switched system (28) with N modes.
If there is a control algorithm (27) and a positive scalar J∗ such that the closed
loop cost function (29) satisfies J ≤ J∗ for all θ ∈ Ωs, α ∈ Ωα, then J∗ is said to
be a guaranteed cost and ”u” is said to be a guaranteed cost control algorithm
for arbitrary switching algorithm σ ∈ S.

Theorem 2. [80] Control algorithm (27) is the guaranteed cost control law for
the switched closed loop system (28) if and only if there is Lyapunov function
V (x, ξ, θ, α) > 0, matrices Q(θ), R and gain matrices Fσk; k = 0, 1, . . . , p such
that for σ ∈ S the following inequality holds

Be =
dV (x, ξ, θ, α)

dt
+ J(t) ≤ −εxTx, ε→ 0 (30)

4.2 Main results

This section formulates the theoretical approach to the robust switched gain-
scheduled controller design with control law (27) which ensure closed loop multi
parameter dependent quadratic stability and guaranteed cost for an arbitrary
switching algorithm σ ∈ S. Assume that in Theorem 2 the Lyapunov function
is in the form

V (x, ξ, θ, α) = xTP (ξ, θ, α)x (31)
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where the Lyapunov multi parameter dependent matrix is

P (ξ, θ, α) =

K∑
i=1

(
P0i +

N∑
σ=1

(Pσ0i +

p∑
j=1

Pσijθj)ασ

)
ξi (32)

Time derivative of the Lyapunov function(31) is

V̇ (.) = [ẋT xT ]

[
0 P (ξ, θ, α)

P (ξ, θ, α) Ṗ (ξ, θ, α)

] [
ẋ
x

]
(33)

where

Ṗ (.) =

K∑
i=1

N∑
σ=1

DPσiασξi (34)

DPσi =

N∑
σ=1

Pσ0iα̇σ +

p∑
j=1

Pσij θ̇j +

p∑
j=1

N∑
σ=1

Pσijα̇σθj

Using equality

(2N1ẋ+ 2N2x)T
(
ẋ−

N∑
σ=1

Aσ(ξ, θ)ασx

)
= 0 (35)

equation (33) can be rewritten as

dV (.)

dt
=

N∑
σ=1

[
ẋT xT

]
Lσ(ξ, θ)

[
ẋ
x

]
(36)

Lσ(ξ, θ) = {lσ(i, j)}2×2

lσ(1, 1) = NT
1 +N1

lσ(1, 2) = −NT
1 Aσ(ξ, θ) +N2 +

K∑
i=1

(
P0i + Pσ0i +

p∑
j=1

Pσijθj

)
ξi

lσ(2, 2) = −NT
2 Aσ(ξ, θ)−ATσ (ξ, θ)N2 +

K∑
i=1

DPσiξi

where N1, N2 ∈ Rn×n are auxiliary matrices.
On substituting (27) to (29) one obtains

J(t) = xTS(θ)x (37)

where

S(θ) = S0 +

p∑
j=1

Sjθj +

p∑
j=1

p∑
k>j

Skjθkθj +

p∑
k=1

Skkθ
2
k

S0 = Q0 + CTFTσ0RFσoC
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Sj = Qj + CT (FTσ0RFσj + FTσjRFσ0)C

Sjk = CT (FTσjRFσk + FTσkRFσj)C

Skk = CTFTσkRFσkC

The switched model plant (28) can be rewritten to the form

Aσ(ξ, θ) = M0(ξ) +

p∑
j=1

Mj(ξ)θj +

p∑
j=1

p∑
k>j

Mjk(ξ)θjθk+ (38)

p∑
k

Mkk(ξ)θ2

where
M0(ξ) = Aσ0(ξ) +Bσ0(ξ)Fσ0C

Mj(ξ) = Aσj + (Bσ0(ξ)Fσj +Bσj(ξ)Fσ0)C

Mjk(ξ) = (Bσj(ξ)Fσk +Bσk(ξ)Fσj)C

Mkk(ξ) = Bσk(ξ)FσkC

Due to Theorem 2 the closed loop switched gain-scheduled system is multi
parameter dependent quadratically stable with guaranteed cost for σ ∈ S, ξi,
i = 1, 2, . . . ,K if the following inequalities hold

Be = [ẋT xT ]W (ξ, σ, θ)[ẋT xT ]T ≤ 0 (39)

where W (ξ, σ, θ) = {wij(σ, ξ)}2×2

w11(σ, ξ) = NT
1 +N1

w12(σ, ξ) =
∑K
i=1

(
P0i + Pσ0i +

∑p
j=1 Pσijθj

)
ξi

− NT
1 Aσ(ξ, θ) +N2

w22(σ, ξ) = −NT
2 Aσ(ξ, θ)−Aσ(ξ, θ)TN2

+
∑K
i=1 DPσiξi + S(θ)

Inequality (39) implies :
- for all σ ∈ S the inequality is linear with respect to uncertain parameter ξi,
i = 1, 2, . . . ,K,
- for all σ ∈ S the inequality is a quadratic function with respect to the gain-
scheduled parameters θi, i = 1, 2, . . . , p.
For the next development the following theorem is useful.

Theorem 3. [81] Consider a scalar quadratic function of θ ∈ Rp

f(θ) = a0 +

p∑
j=1

ajθj +

p∑
j=1

p∑
k>j

ajkθjθk +

p∑
k

akkθ
2
k (40)
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and assume that if f(θ) is multiconvex, that is

δ2f(θ)

δθ2
k

= 2akk ≥ 0, k = 1, 2, . . . , p

then f(θ) is negative definite in the hyper rectangle (25) if and only if it takes
negative values at the vertices of (25), that is if and only if f(θ) < 0 for all
vertices of the set given by (25).

Due to (34), (37) and (38) the robust stability conditions of switched system
can be rewritten as

W (ξ, σ, θ) =

N∑
σ=1

L(θ, ξ)ασ =

N∑
σ=1

(Wσ0(ξ)+

+

p∑
j=1

Wσj(ξ)θj +

p∑
j=1

p∑
k>j

Wσjk(ξ)θjθk+

+

p∑
k=1

Wσkkθ
2
k)ασ ≤ 0

(41)

where Wσ0(ξ) = {wσ0ij}2×2, Wσj(ξ) = {wσjik}2×2

wσ011 = NT
1 +N1

wσ012 = −NT
1 M0(ξ) +N2 +

∑K
i=1(P0i + Pσ0i)ξi

wσ022 = −NT
2 M0(ξ)−MT

0 (ξ)N2 + S0+

+
∑K
i=1

(
Pσ0iα̇σ +

∑p
j=1 Pσij θ̇j

)
ξi

wσj11 = 0; wσj12 = −NT
1 Mj(ξ) +

∑K
i=1 Pσijξi

wσj22 = −NT
2 Mj(ξ)−Mj(ξ)

TN2 + Sj+

+
∑K
i=1

(∑N
σ=1 Pσijα̇σ

)
ξi

Wσjk(ξ) =

[
0 −NT

1 Mjk(ξ)
” ∗ ” −NT

2 Mjk(ξ)−Mjk(ξ)TN2 + Sjk

]
Wσkk(ξ) =

[
0 −NT

1 Mkk(ξ)
” ∗ ” −NT

2 Mkk(ξ)−Mkk(ξ)TN2 + Skk

]
The main results on the robust stability condition for the switched gain-scheduled
control system is given in the next theorem.

Theorem 4. Closed loop switched system (28) is robust multi parameter depend-
ent quadratically stable with guaranteed cost if there is a positive definite matrix
P (ξ, θ, α) ∈ Rn×n (32), matrices N1, N2 ∈ Rn×n, positive definite (semidefinite)
matrices Q(θ), R and gain-scheduled controller matrix Fσ(θ), such that for σ ∈ S

1.
Lσ(ξ, θ) < 0 (42)
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2.

Wσkk ≥ 0, σ ∈ S, θ ∈ Ωs, k = 1, 2, . . . , p

The proof of theorem sufficient conditions immediately follows from eqs. (32)-
(41).
Notes.

• Lσ(θ, ξ) is linear with respect to uncertain parameter ξi, i = 1, 2, . . . ,K,
it holds Lσ(θ, ξ) =

∑K
i=1 Lσi(θ)ξi, therefore inequality (42) for each σ ∈ S

split to K inequalities of type Lσi(θ) < 0 and Wσikk ≥ 0.

• Eq. (32) implies that in dependence on the chosen structure of the Lya-
punov matrix P (ξ, θ, α) one should obtained different types of stability
conditions from quadratic to multi parameter dependent quadratic stabil-
ities. Different types of stability conditions determine the conservatism of
the design procedure and the rate of change of corresponding variables.

5 Gain-Scheduled MPC Design for Nonlinear Systems
with Input Constraints

A novel methodology is proposed for discrete model predictive gain-scheduled
controller design for nonlinear systems with input(hard)/output(soft) constraints
for finite and infinite prediction horizons. The proposed design procedure
is based on the linear parameter-varying (LPV) paradigm, affine parameter-
dependent quadratic stability and on the notion of the parameter-varying guar-
anteed cost. The design procedure is in the form of BMI (we can use a free and
open source BMI solver).

5.1 Problem formulation and preliminaries

Consider a nonlinear plant x(k + 1) = F (x(k), u(k), θ(k)) which is identified in
several working points. The identified family of linear systems in discrete-time
space is given as follows

x(k + 1) = Ai x(k) +Bi u(k)

y(k) = Ci x(k) i = 1, 2, . . . , N
(43)

where x(k) ∈ Rn is the state vector, u(k) ∈ Rm is the controller output, y(k) ∈ Rl
is the measured plant output vector at step k ∈ R+, matrices Ai, Bi, Ci,
i = 1, 2, . . . , N are system matrices with appropriate dimension and N is the
number of identified plants model. Assume that a known vector θ(k) ∈ Ω exists
which captures the parametric dependence of the linearized model (43) on the
equilibrium (working) points of the original nonlinear system.
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5.1.1 Case of finite prediction horizon

The identified family of linear systems (43) for a given prediction and control
horizon Nk can be transformed to the following form [83]

z(k + 1) = Af i z(k) +Bf i v(k)

yf (k) = Cf i z(k) i = 1, 2, . . . , N
(44)

where
zT (k) =

[
xT (k|k) xT (k + 1|k) · · · xT (k +Nk − 1|k)

]
vT (k) =

[
uT (k|k) uT (k + 1|k) · · · uT (k +Nk − 1|k)

]
yTf (k) =

[
yT (k|k) yT (k + 1|k) · · · yT (k +Nk − 1|k)

]
Af i =


Ai 0 · · · 0
A2
i 0 · · · 0

...
...

. . . 0
Ai

Nk 0 · · · 0

 , Cf i =


Ci 0 · · · 0
0 Ci · · · 0
...

...
. . .

...
0 0 · · · Ci



Bf i =


Bi 0 · · · 0
AiBi Bi · · · 0
A2
iBi AiBi · · · 0
...

...
. . .

...
A
Nk−1
i Bi A

Nk−2
i Bi · · · Bi


and x(k + j|k) is the step ahead prediction of the state, calculated in sample
time k. From the family of linear systems (44) one obtains [84] a gain-scheduled
plant model in the form

z(k + 1) = Af a(θ(k)) z(k) +Bf a(θ(k)) v(k)

yf (k) = Cf a z(k)
(45)

where Cf a = Cf 1 = Cf 2 = . . . = CfN and

Af a(θ(k)) = Af a0
+

p∑
i=1

Af aiθi(k)

Bf a(θ(k)) = Bf a0
+

p∑
i=1

Bf aiθi(k)

and Af ai, Bf ai, i = 0, 1, . . . , p− 1 are system matrices with appropriate dimen-

sion, Af ap = 0, Bf ap = 0, θ(k)T = [θ1(k), θ2(k), . . . , θp−1(k)] ∈ Ω is the vector of

p−1 known independent scheduling parameters at step k and θp ∈ 〈0, Hm〉 is the
scheduled parameter which is used to ensure I/O constraints, where Hm ∈ (0, 1).
The control law for the model predictive gain-scheduled controller design for a
given prediction and control horizon Nk is considered in the form

v(k) = F (θ(k)) yf (k) = F (θ(k))Cf a zf (k) (46)

where F (θ(k)) = F0 +
∑p−1
j=1 Fjθj(k)− F0θp(k).
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Note 1. We can extend system (45) to PS or PSD control, for more information
see [85].

The procedure to ensure the input/output constraints is very simple. If
the system input or output approach the maximal or minimal value, using the
scheduling parameter θp one can affect the controller output. There are several
solutions how to generate the scheduling parameter θp, it is depending on the
system. We will deal with this issue in the examples. If we substitute control
law (46) to system (45), a closed-loop system is obtained

z(k + 1) = Ac(θ(k))z(k) (47)

where Ac(θ(k)) = Af a(θ(k)) +Bf a(θ(k))F (θ(k))Cf a.
To assess the performance quality with possibility to obtain different per-

formance quality in each working point a quadratic cost function described in
paper [85] will be used

Jdf (θ(k)) =

∞∑
k=0

zf (k)TQ(θ(k))zf (k) + v(k)TRv(k)

+ ∆zf (k)TS(θ(k))∆zf (k) =

∞∑
k=0

Jd(θ(k))

(48)

where ∆zf (k) = zf (k + 1) − zf (k), Q(θ(k)) = Q0 +
∑p
i=1 Qiθi(k), S(θ(k)) =

S0 +
∑p
i=1 Siθi(k), Qi = QTi ≥ 0, Si = STi ≥ 0, R > 0 and Qp = Sp = 0.

Note 2. Using the cost function (48) we can affect the performance quality
separately in each working point with defining different weighting matrices for
each working point which then are transformed to affine form and depend on
the scheduled parameters as system matrices. [85]

Definition 4. Consider system (45) with control algorithm (46). If a control
law v∗ and a positive scalar J∗d exist such that the closed-loop system (47) is
stable and the value of closed-loop cost function (48) satisfies Jd ≤ J∗d , then J∗d
is said to be a guaranteed cost and v∗ is said to be guaranteed cost control law
for system (45).

Substituting the control law (46) to the quadratic cost function (48) one can
obtain

Jd(θ(k)) = z̃T
[
Jd11(θ(k)) Jd12(θ(k))
Jd
T
12(θ(k)) Jd22(θ(k))

]
z̃ (49)

where z̃T =
[
zT (k + 1) zT (k)

]
and

Jd11(θ(k)) = S(θ(k)), Jd12(θ(k)) = −S(θ(k)),

Jd22(θ(k)) = Q(θ(k)) + Cf
T
a F (θ(k))TRF (θ(k))Cf a

+ S(θ(k))
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To ensure the Affine Quadratic Stability (AQS) [81] the following Lyapunov
function has been chosen

V (θ(k)) = zTf (k)P (θ(k))zf (k) (50)

The first difference of Lyapunov function (50) is given as follows

∆V (θ(k)) = zTf (k + 1)P (θ(k + 1)) zf (k + 1)−

− zTf (k)P (θ(k)) zf (k)
(51)

where

P (θ(k)) = P0 +

p∑
i=1

Piθi(k) (52)

On substituting θ(k+1) = θ(k)+∆θ(k) to P (θ(k+1)) one obtains the following
result

P (θ(k + 1)) = P0 +

p∑
i=1

Piθi(k) +

p∑
i=1

Pi∆θi(k) (53)

where if assuming that Pi > 0, ∆θi ∈ 〈∆θi,∆θi〉 ∈ Ωt, i = 0, 1, . . . , p and
max |∆θi| < ρi, one can write

P (θ(k + 1)) ≤ P0 +

p∑
i=1

Piθi(k) + Pρ = Pρ(θ(k)) (54)

where Pρ =
∑p
i=1 Piρi. The first difference of the Lyapunov function (51) using

the free matrix weighting approach [84] is in the form

∆V (θ(k)) = z̃T
[
V11(θ(k)) V12(θ(k))
V T12(θ(k)) V22(θ(k))

]
z̃ (55)

where
V11(θ(k)) = Pρ(θ(k)) +N1 +NT

1

V12(θ(k)) =NT
2 −N1Ac(θ(k))

V22(θ(k)) =−P (θ(k))−N2Ac(θ(k))−ATc (θ(k))NT
2

where N1, N2 ∈ Rn×n are auxiliary matrices.

Definition 5. [81] The linear closed-loop system (47) for θ(k) ∈ Ω and
∆θ(k) ∈ Ωt is affinely quadratically stable if and only if p+1 symmetric matrices
P0, P1, . . . , Pp exist such that P (θ(k)) (52), Pρ(θ(k)) (54) are positive defined
and for the first difference of the Lyapunov function (55) along the trajectory of
closed-loop system (47) it holds

∆V (θ(k)) < 0 (56)

From LQ theory we can introduce the well known results:
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Lemma 4. Consider the closed-loop system (47). Closed-loop system (47) is
affinely quadratically stable with guaranteed cost if and only if the following in-
equality holds

Be(θ(k)) = min
u
{∆V (θ(k)) + Jd(θ(k))} ≤ 0 (57)

for all θ(k) ∈ Ω. For proof see [80].

5.1.2 Case of infinite prediction horizon

The system described by (45) for the case of Nk = 0 can be transformed to the
gain-scheduled plant model

x(k + 1) = A(θ(k))x(k) +B(θ(k))u(k)

y(k) = C x(k)
(58)

where A(θ(k)) = A0 +
∑p
i=1 Aiθi(k), B(θ(k)) = B0 +

∑p
i=1 Biθi(k), Ap = 0 and

Bp = 0. For the case Nk →∞ and S = 0 the cost function (48) can be rewritten
as

J =

∞∑
k=0

J(k) =

∞∑
k=0

(
∞∑
j=0

xT (k + j)qjx(k + j)

+uT (k + j)rju(k + j)

)
=

∞∑
k=0

∞∑
j=0

J̃(k)

(59)

where qj ∈ Rn×n, rj ∈ Rm×m are positive definite matrices. The control law for
the model predictive gain-scheduled controller design for the infinite prediction
horizon is considered in the form

u(k) = F (θ(k)) y(k) = F (θ(k))C x(k) (60)

where F (θ(k)) = F0 +
∑p−1
j=1 Fjθj(k) − F0θp(k). To guarantee the stability and

performance of the closed-loop gain-scheduled system, due to Lemma 4 it is
sufficient to ensure

Be(θ(k)) = ∆V (x(k + j), θ(k)) + J̃(k) ≤ 0 (61)

where ∆V (x(k+ j), θ(k)) = V (x(k+ j + 1), θ(k) + ∆θ(k))− V (x(k), θ(k)) is the
first difference of the Lyapunov function for j horizon prediction. Summing (61)
from j = 0 to j →∞, the upper bound on J(k) is obtained

J(k) ≤ V (x(k), θ(k)) (62)

On the basis of (62) the following gain-scheduled MPC design procedure is given

min
F (θ(k))

V (x(k), θ(k)) (63)
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with constraints to system model (58), stability model and performance (61)
and other constraints. Assume that the Lyapunov function is in the form
V (x(k), θ(k)) = xT (k)P (θ(k))x(k), where P (θ) = P0 +

∑p
i=1 Piθi(k). Due to

(63), the predicted control design procedure can be modified as

min
F (θ(k))

xT (k)P (θ(k))x(k) ≤ xT (k)x(k)γ (64)

which leads to the inequality

P (θ(k)) ≤ min
F (θ(k))

γI (65)

In the paper [86] inequality (64) is in the form

min xT (k)P (θ(k))x(k) ≤ γ (66)

which needs to know the state vector x(k) and on-line optimization of (66) at
every sample time.

The stability of the closed-loop system is guaranteed if

Be = ∆V (x(k), θ(k)) + αV (x(k), θ(k)) ≤ 0 (67)

where α ∈ 〈0, 1) is a coefficient with an influence on the closed-loop system
performance. If we substitute the Lyapunov function and its first difference to
(67), we can obtain

Be(θ(k)) = x̃TW (θ(k)) x̃ ≤ 0 (68)

where x̃T =
[
xT (k + 1) xT (k)

]
, β = 1− α and

W (θ(k)) =

[
W11(θ(k)) W12(θ(k))
W12(θ(k))T W22(θ(k))

]
W11(θ(k)) =NT

1 +N1 + Pρ(θ(k))
W12(θ(k)) =−NT

1 Ac(θ(k)) +N2

W22(θ(k)) =−N2Ac(θ(k))−ATc (θ(k))N2 − P (θ(k))(β)

5.2 Main results

In this section the discrete predictive gain-scheduled controller design procedure
is presented which guarantees the affine quadratic stability and guaranteed cost
for θ(k) ∈ Ω with pre-defined maximal rate of change of the scheduled parameters
ρ. The main result of this section – the discrete model predictive gain-scheduled
controller design procedure – relies on the concept of multi-convexity, that is
convexity along each direction θi(k), i = 1, 2, . . . , p of the parameter space. The
implications of multiconvexity for scalar quadratic functions are given in the
next lemma [81].

Lemma 5. Consider a scalar quadratic function of α ∈ Rp.

f (α) = a0 +

p∑
i=1

aiαi +

p∑
i=1

p∑
j>i

bijαiαj +

p∑
i=1

ciα
2
i (69)
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and assume that f (α1, . . . , αp) is multi-convex, that is ∂2f(α)

∂α2
i

= 2ci ≥ 0 for

i = 1, 2, . . . , p. Then f(α) is negative for all α ∈ Ω and α̇ ∈ Ωt if and only if it
takes negative values at the corners of α.

5.2.1 Finite prediction horizon

Using Lemmas 4 and 5 the following theorem is obtained for discrete model
predictive gain-scheduled controller design for finite horizon.

Theorem 5. Closed-loop system (47) is affinely quadratically stable if p + 1
symmetric matrices P0, P1, . . . , Pp exist such that P (θ(k)) (52), Pρ(θ(k)) (54)
are positive definite for all θ(k) ∈ Ω, with pre-defined ρi, matrices N1, N2, Qi,
R, Si, i = 1, 2, . . . , p and gain-scheduled matrices F (θ(k)) satisfying

M(θ(k)) < 0; θ(k) ∈ Ω

Mii ≥ 0; i = 1, 2, . . . , p
(70)

where (at sample time k)

M(θ) =M0 +
∑p
i=1 Miθi +

∑p
i=1

∑p−1
j>i Mijθiθj +

∑p
i=1 Miiθ

2
i

M0 =
[
M110 M120

M12
T
0 M220

]
, Mi =

[
M11i M12i

M12
T
i M22i

]
Mij =

[
M11ijM12ij

M12
T
ijM22ij

]
,M110 = P0 +N1 +NT

1 + S0 + Pρ

M11i =Pi, M11ij = 0, M11ii = 0
M120 =N2 −NT

1 (Af a0
+Bf a0

F0Cf a)− S0

M12i =−NT
1 (Af ai +Bf aiF0Cf a +Bf a0

FiCf a)− Si
M12ij =−NT

1 (Bf aiFj +Bf ajFi)Cf a
M12ii =−NT

1 Bf aiFiCf a
M220 =Q0 + S0 − P0 −NT

2 (Af a0
+Bf a0

F0Cf a)
−(Af a0

+Bf a0
F0Cf a)TN2 + Cf

T
a F

T
0 RF0Cf a

M22i =−Pi −NT
2 (Af ai +Bf aiF0Cf a +Bf a0

FiCf a)
−(Af ai +Bf aiF0Cf a +Bf a0

FiCf a)TN2

+Cf
T
a (FT0 RFi + FTi RF0)Cf a +Qi + Si

M22ij =−NT
2 (Bf aiFj +Bf ajFi)Cf a − Cf

T
a (Bf aiFj

+Bf ajFi)
TN2 + Cf

T
a (FTi RFj + FTj RFi)Cf a

M22ii =−NT
2 Bf aiFiCf a − (Bf aiFiCf a)TN2

+Cf
T
a F

T
i RFiCf a

Proof. The proof of the Theorem 5 is clear from the previous derivations. Here,
the proof is repeated only in basic steps. The proof is based on the Lemmas 4 and
5. When substituting the first difference of the Lyapunov function (55) and the
quadratic cost function (49) to the Bellman-Lyapunov function (57), after some
manipulation, using Lemma 5 we obtain (70) which proofs the Theorem 5.
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5.2.2 Infinite prediction horizon

Using inequalities (65), (68) and Lemma 5 the following theorem is obtained for
discrete model predictive gain-scheduled controller design for infinite horizon.

Theorem 6. Closed-loop system is affinely quadratically stable if there exist
p + 1 symmetric matrices P0, P1, . . . , Pp such that P (θ(k)) (52), Pρ(θ(k)) (54)
are positive definite for all θ(k) ∈ Ω, with pre-defined ρi, matrices N1, N2, and
gain-scheduled matrices F (θ(k)) satisfying

W (θ(k)) < 0; θ(k) ∈ Ω

Wii ≥ 0; i = 1, 2, . . . , p

P (θ(k)) ≤ min
F (θ(k))

γ

(71)

where (at sample time k)

W (θ) =W0 +
∑p
i=1 Wiθi +

∑p
i=1

∑p−1
j>i Wijθiθj +

∑p
i=1 Wiiθ

2
i

W0 =
[
W110 W120

W12
T
0 W220

]
, Wi =

[
W11i W12i

W12
T
i W22i

]
Wij =

[
W11ij W12ij

W12
T
ij W22ij

]
, W110 = P0 +N1 +NT

1 + Pρ

W11i = Pi, W11ij = 0, W11ii = 0
W120 =N2 −NT

1 (A0 +B0F0C)
W12i =−NT

1 (Ai +BiF0C +B0FiC),
W12ij =−NT

1 (BiFj +BjFi)C
W220 =−NT

2 (A0 +B0F0C)− (A0 +B0F0C)TN2 − P0β
W22i =−NT

2 (Ai +BiF0C +B0FiC)
−(Ai +BiF0C +B0FiC)TN2 − Piβ

W22ij =−NT
2 (BiFj +BjFi)C − CT (BiFj +BjFi)

TN2

W12ii =−NT
1 BiFiC, W22ii = −NT

2 BiFiC − (BiFiC)TN2

Proof. The proof of the Theorem 6 regarding to space limitations is sketched only
in basic steps. The proof is based on the Lemmas 4 and 5. If we substitute the
Lyapunov function and its first difference to (67), we can obtain (68), after some
manipulation, using Lemma 5 we obtain (71) which proofs the Theorem 6.

6 Concluding remarks

6.1 Brief overview

This thesis deals with controller design for nonlinear systems. The controller is
given in a feedback structure, that is the controller has informations about the
system and use it to influence the system. The nonlinear system is transformed to
linear parameter-varying system, which is used to design a controller, i.e. gain-
scheduled controller. The gain-scheduled controller synthesis in this thesis is
based on the Lyapunov theory of stability as well as on the Bellman-Lyapunov
function. To achieve a performance quality a quadratic cost function and its
modifications known from LQ theory are used. The obtained gain-scheduled
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controller guarantees the closed-loop stability and the guaranteed cost. The
main results for controller synthesis are in the form of bilinear matrix inequalities
and/or linear matrix inequalities. For controller synthesis one can use a free and
open source BMI solver PenLab or LMI solvers LMILab or SeDuMi.

6.2 Research results

In the initial stage of our research I with my supervisor Prof. Ing. Vojtech
Veselý, DrSc. developed a gain-scheduled controller design which guarantees
the closed-loop system stability and a guaranteed cost for continuous-time lin-
ear parameter-varying (LPV) systems for all scheduled parameter changes with
pre-defined rate of scheduled parameter changes. These results were published
in Journal of Process Control and presented at several conferences (ICCC’13,
ICPC’13, ELITECH’13, IN-TECH’13). After that we expanded this theory to
robust controller design for continuous and discrete-time uncertain LPV sys-
tems with possibility for variable weighting in cost function. Some of these
results were published in Journal of Electrical Engineering, in Journal of Elec-
trical Systems and Information Technology and they were presented at several
conferences such as the European Control Conference 2014 (ICCC’14, CPS’14,
SSKI’14, ELITECH’14, ICPC’15).

In the middle stage of our research we modified our approaches from BMI
(bilinear matrix inequality) to LMI (linear matrix inequality) problem. This
caused that our controller synthesis works for high-order systems (50-60th order
was tested). We successfully ported our approaches to switched and model pre-
dictive controller design. Some of these results have been published in Journal
of the Franklin Institute, in Journal of Electrical Engineering, in International
Review of Automatic Control, in Asian Journal of Control and will be presented
at several IFAC symposiums and conferences as MICNON’15 or ROCOND’15
(ICPC’15, ELITECH’15). Also some of these results are under review process
in journals International Journal of Control, Automation and Systems and in
Archives of Control Sciences.

In the final stage we successfully developed a new stability condition where we
could bypass the multi-convexity that significantly reduced the conservativeness
of the controller synthesis. In addition we added to the controller synthesis the
input (hard) / output (soft) constraints as well as input rate (soft) / output
rate (soft) constraints where we do not need online optimization. Publications
of these results are only in the preliminary stage but hopefully they will be
published in high impact factor journals, too.

6.3 Closing remarks and future works

The main goal for this thesis (and also to our research in last 2,5 – 3 years) was
to find a systematic controller design approach for uncertain nonlinear systems,
which guarantees the closed-loop stability and guaranteed cost with considering
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input/output constraints, all this without on-line optimization and need of high-
performance industrial computers.

This summary presents the selected results from 3 published papers. One
can find the main results for robust gain-scheduled controller design, for robust
switched controller design and for discrete gain-scheduled MPC design with in-
put constraints. Dissertation thesis consists from 9 papers, which covers the
main research results obtained within the last 2.5 years. We tried to select
those publications, which best reflect the achieved results. The first included
paper (Chapter 4 ) presents a simple gain-scheduled controller design for nonlin-
ear systems, which guarantees the closed-loop stability and guaranteed cost. One
can include the maximal value of the rate of gain-scheduled parameter changes,
which allows to decrease conservativeness and obtain the controller with a given
performance. In the next chapter one can find a simple modification of these res-
ults, where a new quadratic cost function is used, where weighting matrices are
time-varying and depends on scheduled parameter. Using these original variable
weighting matrices we can affect performance quality separately in each working
points and we can tune the system to the desired condition through all parameter
changes. Chapters 6, 7 presents the robust versions of the obtained results from
Chapters 4, 5, where in Chapter 6 the design procedure is transformed from the
bilinear matrix inequality form to linear matrix inequality, which caused that our
controller synthesis works for high order systems. In Chapter 8 a simplified ver-
sion of the robust controller design in discrete time domain is presented, where
a new LPV description of T1DM Bergman’s minimal model with two additional
subsystems (absorption of digested carbohydrates and subcutaneous insulin ab-
sorption) is created. The controller synthesis in this paper is also transformed to
LMI problem. In Chapters 9 and 10 a gain-scheduled controller designs adop-
ted to switched control are presented in continuous time. In the proposed design
procedures there is no need to use the notion of the ”dwell-time” for arbitrary
switching, which significantly simplifies the switched controller design compared
to approaches in the literatures. In Chapter 11 a novel gain scheduling based
model predictive controller design procedure for nonlinear systems is presented
for finite and infinite prediction horizons with considering input/output con-
straints. Finally a novel unified robust gain-scheduled and switched controller
design approach is presented in Chapter 12 where the conservativeness from
multi-convexity is eliminated.

The stated objectives was reached successfully, but there are many unsolved
problems yet. For example, in this thesis it is hypothesized, that the scheduled
parameters can be measured and the measurement is accurate. It is true, that
if one use the robust version, then the measurement inaccuracy can be covered
as model uncertainty, but this should be studied in more detail. Furthermore,
it would be good to study, how can be used the informations from disturbances
to improve the performance quality under disturbances. Moreover it would be
an interesting study how to reduce the time required to controller synthesis,
because it is well known, that the required time for controller design using LMI
and especially BMI solvers, rapidly increases for higher order systems. It follows,
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that this thesis opens new possibilities for further studies and research in this
specific area.
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[2] ILKA, Adrian – VESELÝ, Vojtech. Robust Gain-Scheduled Controller Design for
Uncertain LPV systems: Affine Quadratic Stability Approach. Journal of Electrical
Systems and Information Technology, 2014, vol. 1, no. 1, p. 45-57.
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[8] VESELÝ, Vojtech – ILKA, Adrian. Gain-Scheduled Controller Design: Guaranteed
Quality Approach. Proceedings of the 19th International Conference on Process Con-
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