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Abstrakt 

Zlyhávanie srdca je stav, pri ktorom je v dôsledku rozličných faktorov poškodená schopnosť srdca pumpovať 

krv do ľudského tela. Jedným z týchto faktorov sú abnormality vo vedení elektrických impulzov v srdci. Keďže 

existuje veľké množstvo možných abnormalít, na ich preskúmanie sa často používajú matematické modely. 

Najvyspelejšie modely na simulovanie elektrickej aktivity srdca a elektrokardiogramov (EKG) sú reakčno-

difúzne (R-D) modely. Výpočtová náročnosť R-D modelov je však taká vysoká, že simulácia čo i len jedného 

úderu srdca trvá hodiny aj na výkonnom superpočítači. Aby bolo možné využiť matematické modely srdca 

i v klinickej praxi je dôležité výrazne redukovať výpočtové časy simulácii.  

 V predloženej práci je predstavený možný koncept urýchlenia simulácii elektrickej aktivity srdca. Bol 

navrhnutý výpočtovo rýchly plne anizotropický model priamej úlohy elektrokardiografie na simulácie aktivačnej 

sekvencie v srdci a na výpočet EKG. Model bol implementovaný v paralelnom programovacom jazyku CUDA 

a podporuje masívne paralelné výpočty na grafických procesoroch (GPU). Šírenie elektrickej aktivácie v srdci 

bolo modelované použitím eikonalovej rovnice. Eikonalová rovnica umožňuje vypočítať aktivačnú sekvenciu, 

respektíve časy, v ktorých excitačný front prechádza cez jednotlivé body myokardu. Pohyb excitačného frontu 

možno sledovať použitím priestorového rozlíšenia, ktoré je o jeden rád menšie ako je rozlíšenie R-D modelu, 

ktoré je potrebné na rekonštrukciu strmého skoku akčného potenciálu, výsledkom čoho sú mnohonásobne kratšie 

výpočtové časy a mnohonásobne menšie požiadavky na kapacitu pamätí výpočtových systémov. Aktivačné časy 

vygenerované použitím eikonalovej rovnice spoločne s predefinovanými akčnými potenciálmi a prenosovou 

funkciou nazývanou „zvodové pole“ boli následne použité na simulovanie povrchových EKG. Výpočtová 

rýchlosť navrhnutého modelu bola otestovaná na štyroch realistických pacientskych geometriách s rozlíšením 1 

mm za použitia dvoch výkonnostne rozdielnych GPU. Výsledky ukázali, že model dokáže simulovať aktivačnú 

sekvenciu a štandardné 12-zvodové EKG na profesionálnom GPU v priebehu 3 sekúnd. Simulované aktivačné 

časy a EKG boli porovnané s hodnotami získanými z R-D modelu. Aktivačné sekvencie vypočítané oboma 

modelmi vykazovali po vizuálnej stránke podobné charakteristiky šírenia. Absolútna chyba aktivačných časov 

v približne 270 000 porovnávaných bodoch kolísala lokálne od 0 až do 30.08 ms, avšak v 94% bodov 

nepresiahla 10 ms. Simulované EKG boli porovnané individuálne pre každý z dvanástich zvodov. 

Akceptovateľné rozdiely boli dosiahnuté len pri porovnávaní QRS komplexov, pre ktoré bola vyhodnotená 

priemerná RMS relatívna odchýlka rovná 0.51 a priemerný korelačný koeficient rovný 85.05%. Po vizuálnej 

stránke sa väčšina QRS komplexov zhodovala tvarom, polaritou a trvaním a vykazovala rozdiel približne 0.3 mV 

v amplitúde vrcholu R vlny. Porovnanie repolarizačných častí EKG kriviek ukázalo mnoho rozdielov, a to aj 

napriek tomu, že navrhnutý model uvažuje s transmurálnou heterogenitou trvania akčných potenciálov. Aby bolo 

možné urobiť rozumné závery ohľadom reprodukcie T vlny, je potrebné vykonať hlbšiu štúdiu používaných 

parametrov a porovnať simulované a merané EKG krivky. Praktická užitočnosť modelu bola otestovaná na 

optimalizačnej procedúre. Jej cieľom bolo nájsť čo najlepšiu zhodu medzi simulovanými a meranými 

aktivačnými časmi, a to postupnou úpravou polôh jedného stimulačného bodu a hodnôt regionálnych rýchlosti 

vedenia vzruchu. Vďaka výpočtovej rýchlosti modelu bola v priebehu niekoľkých minút detegovaná skupina 

parametrov, vedúca ku korelačným koeficientom medzi simulovanými a meranými aktivačnými časmi v rozsahu 

od 85 do 94%. 

 Navrhnutý model je ako súčasť inverzných procedúr aktívne využívaný na Ústave výpočtových vied 

v Lugane. Výstupy z inverzných procedúr slúžia ako počiatočný odhad pre nastavenie parametrov R-D modelu, 

pomocou ktorého sa realizuje finálne ladenie zhody medzi simulovanými a meranými dátami. Dlhodobým 

cieľom je vyvinúť technológie, ktoré by zlepšili diagnostiku abnormalít elektrickej aktivácie srdcových komôr. 
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1 Introduction 

Heart failure is a condition in which the heart muscle cannot pump enough blood to fulfill the needs of other 

organs in the body. It is one of the most common diseases in the western world [1]. Heart failure may be 

caused by many factors, one of which are abnormalities in the conduction of electrical impulses through the 

heart. These abnormalities may change the normal activation of individual heart regions, and hence influence 

the overall heart contraction. Studies published in the last few years are suggesting that there is a large 

variety in these abnormalities, and that a better characterization of individual factors is important for an 

appropriate choice of treatment.  

 Nowadays, thanks to an enormous computational power of parallel hardware resources and advances in 

numerical methods, it is common to study complex biological systems by the use of mathematical models 

and computer simulations. Models enable to test various hypotheses and predict the behavior of evaluated 

systems by simple tuning of their parameters. The outputs of the simulations may be compared with 

measured data, so the conclusions about the hypotheses can be drawn. The current state of the art model for 

forward simulation of cardiac electrical activity is so called bidomain model [2], [3]. The bidomain model 

assumes the cardiac tissue consisting of interleaving intracellular and extracellular domains that are separated 

by a cell membrane with ionic channels. The prominent feature of this model is its ability to account for 

different anisotropic electrical conductivities in both domains. The bidomain model allows for the simulation 

of cardiac extracellular potentials, transmembrane potentials (and hence also activation times) and when 

coupled with the torso, to simulate the electric field within the body and on the body surface as well. The 

outputs of the model can be compared with invasively measured endocardial or epicardial potentials or 

activation times, and also with noninvasively measured body surface ECGs. One such a highly realistic 

computer model of the human heart [3], [4] tailored to the individual patient’s anatomy and physiology 

characteristics is routinely used at the Institute of Computational Science in Lugano. The group around  

Prof. Mark Potse tries to optimize the match between measured and simulated activation times and ECGs by 

feeding the input parameters of the model with various physiological and pathological quantities. With this 

method very good matches can be obtained, and it is considered to be a very promising approach to identify 

tissue abnormalities that could not be diagnosed in any other way [5]. However, due to its computational 

complexity the model has to run on a large supercomputer and the solution for a single heart beat takes in the 

order of hours (eventually in the orders of tens of minutes if the simplified monodomain variant is used to 

simulate the electrical propagation). Hence in total it usually takes several weeks to adapt the model to a 

single patient. The goal of this thesis is therefore to develop a computationally fast forward model that could 

significantly speed up and automate the initial tuning of model parameters. 

In general, computationally fast models simulating the electrical activity of the heart are based on 

simplified formulation of cardiac sources and volume conductor, what allows them to achieve high execution 

speed at the expense of accuracy. Many of them assume isotropic conductivity of the heart and torso regions 

and rely on simple shape geometries. However, in this study we proposed a forward model that is much more 

complex and realistic than those in the existing approaches. In particular, it takes into account the anisotropic 

nature of the cardiac tissue as well as the anisotropy and heterogeneity of the human torso and in addition is 

tailored to patient-specific geometries. The proposed model simulates the spread of excitation within the 

heart by the use of the eikonal formulation [6], [7] the output of which is set of activation times. These 

activation times together with precomputed action potentials and a transfer function known historically as 

”lead field” [8], [9] are subsequently used to simulate surface ECGs. Eikonal approach instead of solving for 
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transmembrane potentials, computes only the activation sequence or the times at which the excitation 

wavefront passes through a given points in the myocardium. From the computational point of view it is 

important that the motion of the wavefront is observed at the scale of the order of 1 mm that is much larger 

than the 0.1 - 0.2 mm scale required to reliably reconstruct the sharp upstroke of the action potential by the 

R-D models (bidomain or monodomain). As a result much shorter computation times can be reached. The 

spatial discretization at a resolution of 1 mm is high enough to resolve the local fiber orientation and an 

anisotropic computation of the dipole sources, thus the model is able to account for the influence of 

anisotropic conductivity on the ECG, as well as on the propagation velocity. When compared to R-D models 

the only important simplification is that the influence of ionic heterogeneity on the propagation velocity and 

repolarization characteristics is neglected. 

For practical applicability it is crucial that the computer models are fast enough and preferably that they 

can soon work on local computers rather than remote supercomputers. To achieve this, the proposed model 

supports massively parallel computation on graphic processing units (GPUs). The GPUs were originally 

designed for the processing of complex computer graphics. However, over the years they evolved into 

massively parallel devices with thousands of execution units called cores and nowadays they are commonly 

used in the high performance computing (HPC) sector for performing non-graphical, so called general-

purpose computations [10]. Today’s most powerful high-end GPUs are reaching more than 5 TFLOPS (tera 

floating-point operations per second) of double precision floating point performance. Each GPU core is much 

simpler and less powerful than a core of central processing unit (CPU), however, hundreds or thousands of 

these modest cores on a single chip outperform a CPU by two orders of magnitude. Nevertheless, GPUs are 

accelerators specialized exclusively for processing of tasks that exhibit massive data parallelism, thus the 

tasks solving of which requires to execute the same instruction on a big data set in parallel. Proposed model 

consisting of hundred of thousands computational elements indeed hides enormous potential for data 

parallelization.  

To conclude, the goal of this thesis is to develop a GPU-accelerated fully anisotropic forward model for 

the investigation of cardiac electrical activity that due to its computational efficiency could be effectively 

used as part of inverse models to estimate the patient-specific parameters and to make patient-specific 

predictions of cardiac activation patterns and ECGs. 

 

2 Goals of the dissertation thesis 

As mentioned above, the main goal of this thesis is to develop a GPU-accelerated fully anisotropic forward 

model for the simulation of the activation sequence in the cardiac tissue and the computation of ECGs. 

Primary attention will be focused on the implementation details of parallel algorithms running on GPUs. In 

particular, the aims are: 

- to investigate possible utilization of general-purpose computations on GPUs for processing of 

multichannel ECGs and primary for solving the forward problem of electrocardiography; 

- to develop fully anisotropic model for solving the forward problem of electrocardiography. The forward 

model is aimed at the simulation of the activation sequence in the cardiac tissue using the eikonal equation 

and at the simulation of the ECGs using three main components: the activation sequence obtained from 

the eikonal equation, precomputed action potential and the transfer function known as the lead field; 

- to implement the forward model on a massively parallel CUDA GPU; 
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- to evaluate the parallel computational methods embedded in the proposed forward model in terms of their 

speedup and parallel scalability on different GPUs and to compare the resulting simulated activation 

sequences and ECGs with the results obtained from a R-D model as a reference. 

 

3 Whole-heart models 

Over the past few decades a tens of models simulating electrophysiological behavior of the human heart with 

different levels of details have been introduced. In the following section first, the state-of-the-art model for 

the simulation of electrical activity of the heart so called bidomain model together with it simplified variant 

called monodomain model will be introduced, and consequently computationally faster more approximate 

eikonal model will be discussed.   

 

3.1 Bidomain and monodomain model 

In the bidomain approach [11], [2] the myocardium is represented by two interpenetrating domains, one for 

the intracellular (subscript i) and the other for the extracellular region (subscript e) of the cardiac tissue. The 

key aspect of the model is that both these domains are assumed as coexisting at all points in the myocardium. 

The connection between the two domains is realized through the cell membrane, which contains the ionic 

channels represented by voltage and time dependent currents that generate action potentials within the cells. 

Bidomain equations are given in the following form 

   ,(       )   -       (     )        (3.1) 

   (     )      (     )     (  

   
  

       )        (3.2) 

where    and    (Sm-1) are the intracellular and extracellular conductivity tensors,    ( ) is the electric 

potential in the extracellular domain,    ( ) is the transmembrane potential,   (m-1) is the surface to volume 

ratio of the cell membrane      (Am-2) is the ionic current density per unit area, and finally the     and     ( ) 

are external stimulus current applied to extracellular and intracellular domain, respectively. The Equation 

(3.1) describes the conservation of current and by providing a transmembrane potential distribution it is used 

to solve the extracellular potential. The Equation (3.2) describes the flow of current through the cellular 

membrane and serves to calculate the transmembrane potential distribution [3], [12].  

If the intracellular and extracellular conductivity tensors    and    are proportional,         , with   be 

a constant scalar factor, or in other words, if the two media have the same anisotropy ratio, then the system of 

bidomain equations (3.1) and (3.2) can be reduced to a monodomain R-D equation 

   (    )     (  

   
  

       )       (3.3) 

where   is a tensor of effective conductivities. The extracellular potential    plays no role in monodomain 

equation (3.3), hence the    can be computed independently from   , what substantially reduces the 

computational complexity of the monodomain model comparing with the bidomain model. 

 



 

4 

 

3.2 Eikonal model 

The eikonal model takes into account only the depolarization phase of the cardiac excitation process and 

approximates the thin depolarization region by propagating excitation wavefront. The output of the eikonal 

model is set of activation times at which the wavefront passes through the myocardium. A governing 

equation for the activation time is an eikonal equation. Colli-Franzone et al. in [6], derived the eikonal 

equation from the bidomain equations applying a perturbation technique, hence both approaches can be 

compared. The derivation is based on relating the velocity of the excitation wavefront to the anisotropic 

conductivities of the intracellular and extracellular domains. The eikonal model proposed in this thesis is 

based on the zero-order eikonal equation given by 

 { 
 ( )√ ( )  ( )    ( )      

 (  )       
    

       *  + 
            

  (3.4) 

where   (ms) is the activation time,    (mS cm-1) is the tensor of effective conductivities defining the local 

anisotropy of the tissue,    ((cm
3
 (ms

2
mS))

1 2
 is a membrane parameter, and   is the number of early 

activation sites. The early activation site represents a point source    with initial time    from which the 

excitation front initiates (see Figure 3.1).  

The membrane parameter   enables to match the conduction velocity   (cm ms-1) of the eikonal equation 

to the one from the bidomain equations. The eikonal model approximates the conduction velocity along the 

given direction   as 

       √    (3.5) 

where    represents an effective conductivity, while the corresponding conduction velocity in the bidomain 

approach is expressed as 

       √
  

 
 (3.6) 

where   (cm-1) is the surface to volume ratio of the cell membrane and    (cm (ms mS-1 2)) is scaling factor 

that links the ionic model and conduction velocity. Combining (3.5) and (3.6) we obtain the expression for 

the membrane parameter   that can be used to link the eikonal and bidomain parameters 

     
 

√  
  (3.7) 

 

 

Figure 3.1: The isosurfaces of ventricular activation times. Early activation sites (single on the left side and three 

on the right side) are shown as small red spheres. 
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4 General-purpose computing on graphics processing units 

The algorithms designed in this work are destined for the GPUs based on CUDA architecture (Compute 

Unified Device architecture). CUDA is parallel hardware and software platform developed by Nvidia. The 

enormous computational power of CUDA GPUs lies in the massive parallelism. In CUDA execution model 

millions of running threads are organized into the groups of 32 consecutive threads called warps [10], [13] 

that are mapped among available cores. When a warp idles due to arithmetic or memory instruction latencies 

(10 – 20 and 400 – 800 cycles latencies, respectively [14]), the warp scheduler immediately selects another 

warp for the execution. Here lies the power and effectiveness of the GPUs. Massive number of available 

warps (or threads) ready for execution hides long lasting latencies and permanently utilizes the GPU 

resources. 

 

 

Figure 4.1: CUDA memories. 

 

The key impact on the GPU application performance has a proper management of the various types of 

GPU memories. The peak GPU performance can be achieved when the fast but lower capacity on-chip 

memories are heavily utilized with minimal communication with the slower but higher capacity off-chip 

memories. In addition, to maximize the use of bytes that travel through the bus it is necessary to keep data in 

memories aligned and access them in coalesced manner. Coalesced memory accesses are especially 

important when accessing the global memory, in which the majority of data transfers starts and terminates. In 

general it is important to let the consecutive threads to access the data in consecutive memory locations. If 

strided memory access are required, instead of single chunk of data fetched from memory, several chunks are 

fetched and the memory bandwidth is significantly wasted [13], [15]. 

 

5 Proposed heart model anatomy 

Proposed heart model uses a structured cubic mesh. A basic building element of the model is a cubic element 

called voxel (Figure 5.1). The corners of a voxel are called vertices. The model anatomy is defined inside a 

file that contains a cell type code (one byte value) for each voxel of the model. The cell type code determines 
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what material properties are associated with a voxel. Material properties are defined by six conductivities, 

three for the intracellular domain    ,    ,     and three for the extracellular domain    ,    ,    , and by the 

square power of the membrane parameter  . If the comparison with the R-D model is of interest, surface to 

volume ratio  , and scaling factor   (see (3.7)). can be used instead of  . Once the material properties are 

mapped to a voxel, a voxel becomes a cube. The corners of a cube are called nodes. In the patient-specific 

geometries that were used in our experiments on around 10 % of voxels and vertices acted as cubes and 

nodes, respectively). The model works by default with the resolution         , however   is a parameter 

that can be changed in each spatial direction. 

 

        

Figure 5.1: Basic building elements of the proposed heart model. 

 

5.1 Mapping of the cell type code to a substance 

The default arrangement of the cell type code data of our realistic heart models forms a continuous layered 

structure of substances. In Figure 5.2 this layered structure across the transverse and longitudinal section of 

the right and left ventricles can be seen.  

 

 

Figure 5.2: A layered structure of the substances across the transverse and longitudinal section of the right (RV) 

and left (LV) heart ventricles of a realistic geometry. Only layers with specified substances are displayed. 
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 The branches of the His bundle and the system of Purkinje fibers were in the proposed model roughly 

approximated by a thin subendocardial layers (yellow layers in Figure 5.2). We called this thin layers ”fast 

endocardial layers”. The purpose of these fast endocardial layers is to rapidly spread the excitation through 

the ventricles. On the one hand, this approach significantly simplifies the reality, but on the other hand, it 

allows a simple and quite accurate control of the initialization of the cardiac activation, which is a 

fundamental prerequisite for correct simulation of ECGs [16].  

 

5.2 Mapping of the cell type code to an action potential 

In order to take into account also the action potential heterogeneity across the heart, the model determines the 

mapping of the cell type codes to the predefined action potentials. However, the action potentials are mapped 

to the vertices, instead of voxels of the model. In our simulations, the cell heterogeneity was only considered 

as a transmural variation of the action potential duration (APD) in both ventricles. Hence, we assumed that 

the epicardial cells have the shortest APD, the endocardial cells have an intermediate APD and the M cells 

the longest APD. In addition, we assumed that the epicardial and mid-myocardial APDs were a bit shorter in 

the right ventricle than in the left ventricle. The action potential waveforms used in our simulations are 

depicted in Figure 5.3. These waveforms were generated by the Ten Tusscher-Noble-Noble-Panfilov (TNNP) 

membrane model [17] and Ten Tusscher-Panfilov (TP06) membrane model [18]. 

 

 

Figure 5.3: The action potentials waveforms used for the simulation of ECGs (in both graphs the waveform 

marked as endo overlaps with the waveform marked as LV_epi). 

 

5.3 Implementation of the ventricular anisotropy 

The cardiac tissue is arranged anisotropically. The anisotropy of cardiac tissue is one of the main factors 

affecting the propagation of electrical waves and contraction in ventricles of the heart [19]. Experimental 

measurements [20] showed that the fastest propagation is along the myocardial fibers and is 2 - 4 times faster 

than propagation across the fibers [21].  

Measurements of human left ventricular tissue made by Streeter [22] showed a continuous transmural 

rotation of the helix angle  , which is the angle between the fiber direction and the atrioventricular ring 

direction in a plane parallel to the local endocardial surface (see Figure 5.4). If the orientation from base to 
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apex is chosen to be ± 90°, and the angle 0° represents the equatorial direction, then   changes from +55° in 

the subendocardium to −75° in the subepicardium.  

 

 

Figure 5.4: The Streeter's definition of transmurally rotating helix angle   (top left). The helix angle is evaluated 

on a block of cardiac tissue cutout transmuraly from the left ventricular wall. (Adapted by author from [23].) 

 

For modeling purposes, it is convenient to define a natural set of material directions to characterize the 

structure of myocardial tissue at an arbitrary point in the heart wall. Typically three unit vectors are used: 

unit vector directed along the fibers  , unit vector perpendicular to the fibers in the sheet plane   and unit 

vector normal to the sheet plane   (the detailed studies of LeGrice et al. [20], [24] shown that the fibers in 

the heart are locally organized into laminar structures called sheets). 

To account for the anisotropic properties of the ventricular tissue the proposed model utilizes three angles 

 ,  , and   to describe the above mentioned fiber, sheet, and normal orientations. These three angles relate 

to the Euler angles [25], and are used to express the fiber orientation in local material coordinate system with 

respect to a fixed coordinate system.  

For the determination of the myocardial fibers the rule-based approach was used [3]. First, for each 

ventricular node, a minimal distance to the endocardial       and epicardial      surface was computed. 

Afterwards, for each node of the mesh a thickness parameter   was evaluated using 

     
    

            

 (5.1) 

and hence,   was equal to zero at the epicardium and one at the endocardium. Consequently, at each node of 

our mesh an average value  ̄ was computed using the value of   at that node and the values of   at its 26 

neighbors. In the next step the negative gradient of  ̄, thus a vector       ̄, was determined. The 

vector   represented the unit vector in the direction normal to the sheet. One can imagine the sheets in the 

model as the ”onion layers”, with   pointing from endocardium to epicardium. The unit vectors in the fiber 

direction   were set orthogonal to the vectors  , while taking into account a helix angle   expressed as 

      (      ̄)  (5.2) 

were   was set equal to   ⁄  for the left ventricle and   ⁄  for the right ventricle.  



 

9 

 

5.4 Summary of model parameters 

Relevant parameters of the proposed model are summarized in Table 5.1. The majority of them were already 

discussed in previous chapters. Two remaining, namely the early activation site, and the lead field are 

discussed here. 

 The early activation site (EAS) represents a stimulation site from which the electrical activation starts to 

propagate through the ventricles. EAS is defined by three coordinates x, y and z that describe its position in 

the ventricles and by time constant t that represents the starting time of propagation (or delay of stimulation). 

The model enables to define several EASs for single activation. 

 The lead field ( ) is used during the computation of ECG. Proposed model keeps precomputed values of 

  for each of the simulated ECG leads. The computation of   itself takes into account particular heart and 

torso anatomy and is described in Chapter 7. The lead field, in contrast to the cell type code data, and the 

three angles ( ,  , and  ) describing the fiber and sheet orientations, is defined for each vertex of the model 

and is stored in a dedicated file. 

 

mesh resolution h (x, y, and z dimension) 

parameter handling cell type codes  

parameters handling precomputed angles encoding fiber architecture (φ, γ, α) 

square root of membrane parameter ρ 

surface to volume ratio of cell membrane β 

scaling factor α that links ionic model and conduction velocity 

six conductivities (σil, σit, σic, σel, σet, σec) 

parameter smap for mapping of substances 

parameter imap for mapping of action potentials waveforms 

parameter defining three coordinates of early activation site and a time delay of stimulation 

parameter handling precomputed action potential waveforms 

parameter handling precomputed lead fields 

parameters defining the length and resolution of simulated ECG 

Table 5.1: Relevant parameters of proposed forward model. 

 

6 Numerical implementation of the eikonal equation 

Under suitable hypothesis on the coefficients and the initial data, there exists a unique closed-form viscosity 

solution [26] of the eikonal equation (3.4), which reads as follows  

  ( )      
         

*      (    )+ (6.1) 

where  (    ) is the travel time from   to    defined as 

  (    )       
 

{
 

 
 
∫

 

 ( ( ))

 

 

‖    
 
 ( ( ))  ( )‖   

    (,   -  ̄)  ( )     ( )    

 

}
 

 
 (6.2) 
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where   is the tensor of effective conductivities and  ( ) is a curve describing the fastest path from point   

to   . Once we assume that the points   and    are located within a local region of myocardium which is 

described by a constant values of   and  , then the fastest path in Euclidean space is the length of a straight 

line (or the shortest path) between these two points and the travel time is then given by 

  (    )    ‖( √ 
 
)
  

(      )‖    ‖  
 (      )‖ (6.3) 

Since  (    ) represents the travel time and (      ) represents the distance, then  √  stands for the local 

velocity tensor (which is for one-dimensional case in agreement with (3.5)).  

 

6.1 The finite-element discretization 

A linear finite-element approximation was used to solve the eikonal equation. The structured grid was 

uniformly tetrahedralized and the activation time was given as the finite-element function in every 

tetrahedron. The simplified local equations were then solved by the Hopf-Lax formula [26] and the Golden 

section search method [27]. The resulting system of nonlinear equations was solved by two iterative methods 

that we adapted to our needs, namely the ”Jacobi iterative method” (JIM) and the ”Fast iterative method” 

(FIM) [28]. The idea of the iterative methods is to compute the activation time at each iteration step and to 

compare the newly computed value against the value from the previous iteration step. If the absolute value of 

the difference between the new and old value is below some tolerance, then the solution has converged and 

the algorithm stops to execute. 

 Around each node in the computational domain (     ), an agglomerate    was created (see Figure 

6.1). As the agglomerate is called a collection of   ⟨   ⟩ tethrahedra sharing the node    as their central 

node. The agglomerates play important role in the proposed eikonal solver, since the solution (activation 

time) was always evaluated per agglomerate basis. In order to compute the activation time at    of each 

agglomerate a collection of minimization problems was solved. The idea of the minimization was to localize 

virtual node on the agglomerate surface, the travel time from which to    was minimal. This virtual node and 

the travel time from it to    were evaluated separately for each of the agglomerate’s tetrahedra. Within each 

tetrahedron, the solution was approximated using the known activation times at the other three nodes of the 

tetrahedron and assuming   and   be constant within the tetrahedron.  
 

        

Figure 6.1: On the left: 3D representation of two different agglomerates   (  ) formed by tetrahedra 

sharing the node      . On the right: 2D representation of four agglomerates. 
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During the kernel execution individual threads operated on individual tetrahedra, and the groups of eight 

consecutive threads operated on agglomerates. In more detail, the first eight threads computed the solution at 

the central node of agglomerate with index zero, the next eight threads computed the solution at central node 

of agglomerate with index one, and so on. After the solution within the tetrahedron was obtained, each thread 

within the agglomerate sent its solution to the shared memory through the atomic function. This atomic 

function served as a filter that saved into the shared memory the minimum activation time among all in the 

agglomerate. Once the minimal solution was obtained the content of the shared memory was copied into a 

global memory array that at the end of the kernel execution held newly computed solutions. Consequently, 

after the synchronization with the CPU, the convergence of the solution was checked. Once the solution 

converged the iteration process was stopped.  

 

6.2 The data structures 

Based on the above mentioned agglomerate-based assumptions of the thread organization, the data structures 

supporting the coalesced memory accesses of running threads were created. It is out of the scope of this 

Summary to discuss all tailored data structures proposed for efficient use on the GPU. Nevertheless, the main 

idea is captured in Figure 6.2, where chosen data structure used to hold the indices of the nodes of all 

tetrahedra in the computational domain is depicted. Notice that the elements in the data structure are stored 

and also fetched per agglomerate basis. Hence, the data structure supports coalesced memory accesses of 

running threads during the kernel execution. In Figure 6.2 the   represents number of nodes in the 

computational domain. 

 

        

Figure 6.2: Schematic view of the data structure used to keep the indices of the tetrahedron nodes. In red is 

depicted the organization of the GPU threads while accessing the data structure. 

  

6.3 Jacobi iterative method 

The JIM solved the eikonal equation at all nodes of the computational domain at each iteration, thus the 

activation times were computed even at the nodes that were far away from the excitation front. In the 

preprocessing step, the boundary conditions (the early activation sites) were set on corresponding mesh 
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nodes, and the values of the rest of the mesh nodes were set to infinity. In the iteration step the activation 

times were iteratively computed until the solution converged.  

 

6.4 Fast iterative method 

In contrast to the JIM, the FIM solved the eikonal equation selectively on the mesh nodes. The solution was 

iteratively computed only at the nodes laying on the surface of propagating excitation wavefront.  

In the preprocessing step, the boundary conditions (the early activation sites) were set on the grid, and the 

values of the rest of the grid nodes were set to infinity. Next, the six neighbors (in the cardinal directions) of 

the early activation site nodes were added to the list of active nodes (LAN). In the iteration step only the 

activation times at the nodes in LAN were updated. The LAN was reevaluated at each iteration step. The 

nodes were added to or removed from the LAN based on a convergence measure. The iteration procedure 

was repeated until the LAN was empty. 

 

7 Numerical implementation of the ECG computation 

The eikonal model provides a field of ventricular activation times  ( ). To compute the surface ECGs, a 

lead field was used, one such lead field for each of the twelve standard ECG electrodes. The computation of 

each ECG lead potential  ( ) at time   was based on the lead field theory [8], [9] and the bidomain 

representation of the cardiac sources 

  ( )    ∫   (   )    ( )  ( )  
 

 

 (7.1) 

where   is the heart domain,    is elementary volume of the heart domain,   is the position in the heart, 

  (   ) is the transmembrane potential at position   and time  ,   ( ) is the intracellular conductivity tensor 

and  ( ) is the lead field of the specific ECG lead. The lead field was created by a unit current applied in the 

two electrode locations 

   (   )    {
  

 
 
    

                          
                          
          

 (7.2) 

where             is the bulk conductivity tensor of the body (   vanishes outside the heart) [29]. (In this 

procedure a potential field is established in the torso and the gradient of this potential field at any point in the 

heart region is termed as the lead field   (    ) of a given electrocardiographic lead [9].) Equation (7.2) 

was solved for   with R-D model [3], [4], using the patient-specific heart and torso models created as 

described in [30]. Both the lead field and the dipole sources were computed with fully anisotropic 

conductivity values. To obtain   (   ) from  ( ) a predefined action potential waveform  ( ) was used 

   (   )     (     ( )) (7.3) 

Two methods for the computation of the ECGs were implemented, namely the ”Simple method” (SM) and 

”Fast method” (FM). These methods will be discussed in the upcoming chapters. 
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7.1 The data structures 

Since the transmembrane potentials as well as the lead field values are defined at cubes nodes, and the 

conductivities are defined at cubes, it is convenient to let the threads to evaluate the ECGs per cubes, not per 

nodes as it was in case of the eikonal solver. Hence, we let the consecutive threads to operate on consecutive 

cubes of the mesh. Based on this assumption the cube-based data structures were designed for the 

computation of ECGs. Again, it is out of the scope of this Summary to discuss all tailored data structures 

proposed for efficient use on the GPU. Nevertheless, in Figure 7.1 chosen data structure used to hold the 

indices of eight nodes of all cubes in the computational domain is depicted. Again this data structure supports 

coalesced memory accesses of running threads during kernel execution. 

 
 

Figure 7.1: Schematic view of the data structure used to keep the indices of the cube nodes (C is number of 

all cubes). In red is depicted the organization of the GPU threads while accessing the data structure.  

 

7.2 Simple method 

In the SM directly the integral in (7.1) was evaluated. Each cube was assigned to an individual thread, and 

each thread was updating the local contribution of one cube to the ECG. In order to compute an ECG sample 

for fixed time instant  , hence the  ( ), the contributions from all the cubes for that instant were summed up. 

Our implementation performed an atomic summation directly in the global memory. Further, since standard 

12 ECG leads were computed, and the computation of individual leads is independent from each other, also 

parallel CUDA streams were integrated into the code. Each stream computed one ECG lead. The aim was to 

support a grid level concurrency by running multiple kernels in parallel, and thus to keep the GPU busy as 

much as possible. Moreover, in order to support also overlapping of the data transfers with the kernel 

execution, all transfers between the CPU and GPU were realized using asynchronous functions. 
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7.3 Fast method 

Thanks to the coarea formula [31] the equation (7.1) can be rewritten as the convolution of two functions as 

follows  

  ( )    (    )( )  ( )    ∫  ( )    ( )  ( )   

 

  

 (7.4) 

where   ( ) indicates the temporal derivative of the action potential waveform and    is the surface of the 

excitation wavefront at time   with  ( ) being its normal. 

The computation of the ECG proceeded in two steps. First, the  ( ) function was evaluated with the 

marching cubes (MC) algorithm [32] that was modified to run on the GPU. Each cube was assigned to an 

individual thread, and each thread was updating the local contribution of one cube to the  ( ) function. 

However, this contribution was computed only for those time steps for which the excitation wavefront 

intersected the cube. The MC algorithm based on the known activation times resident at the eight cube nodes 

returned the triangulation of the excitation front in particular cube (see Figure 7.2). Second, after the 

synchronization on the CPU, the convolution itself was computed by another kernel on the GPU. Similarly to 

the Simple method, the CUDA streams were also included into the computation of ECGs. Each CUDA 

stream evaluated one ECG lead. 

 

        

Figure 7.2: Marching cubes – localization of the excitation wavefront in between nodes of opposite classification. 

 

8 Results and discussion 

In this section first the computational power of the GPUs on a relatively small computational problem 

compared to the simulations of the electrical activity of the whole heart is examined. In particular, the 

speedup of a parallel real-time multichannel ECG filtration running on the GPU is evaluated. Next the 

attention is focused on the proposed forward model. The performance of the proposed eikonal solver and 

ECG solver in terms of their runtimes on the GPU is discussed. Afterwards the activation times and ECGs 

computed by the parallel solvers are compared with their counterparts obtained from an  

R-D model that served as a reference. Finally, a possible practical application of the eikonal solver is shown. 

The eikonal solver combined with an inverse optimization procedure is used to estimate the position of early 

activation site and the regional conduction velocities in the heart. The optimization procedure makes use of 

the difference between simulated and measured activation times. 
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8.1 Real-time multichannel ECG signal processing on GPU 

Before the parallel GPU kernels were integrated into the proposed forward model consisting of tens of 

thousands of elements, the suitability and computational efficiency of the GPU was tested on a smaller ECG 

processing task where only thousands of the GPU threads did the computations.  

Three programming modules that are commonly incorporated into the real-time ECG signal processing 

procedure were created, namely the data formatting module, data saving module and filtration module. Since 

the filtration module was computationally the most intensive it was parallelized and designed for the 

execution on the GPU. The filtration module eliminated the ECG baseline wandering using a high-pass finite 

impulse response filter with the impulse response length of 4065 samples. The filter was realized in the 

frequency domain using the convolution theorem of the discrete Fourier transform. To ensure continual ECG 

filtration a well-known overlap-save block filtering algorithm [33] was used. The implementation details are 

documented by Kaľavský and Tyšler in [34]. 

In the experiments the runtimes of all three modules were measured on the CPU, and the runtime of the 

filtration module was evaluated also on the GPU. The performance of proposed modules was tested on one 

CPU core of the Intel core i7-875K (4 cores, 2.93 GHz, 4 GB DDR3) and the performance of the parallelized 

module on NVIDIA GeForce GTX 480 GPU (480 cores, 1.4 GHz, 1536 MB GDDR5). During the 

experiments 67 simulated ECG signals from a signal generator were sensed by the high-resolution 

multichannel ECG mapping system ProCardio-8 [35] using the sampling frequency of 2000 Hz and 22-bit 

sample resolution. The signal matrix entering periodically the filtration was of the size 67 x 4096 samples. 

The threads in the parallel version of the data filtration module computed 67 forward FFTs and consequently 

67 inverse FFTs in parallel using the CUFFT GPU-based library [36]. Moreover, for the elementwise 

multiplication of DFTs of input sequence and the impulse response, the kernel with 67 x 4096 running 

threads was created, and each thread of this kernel computed one element of the output matrix. The runtimes 

of individual program modules are depicted in Figure 8.1.  

 

        

Figure 8.1: Runtimes of individual program modules. 

 

As it can be seen in Figure 8.1, thanks to the thousand of threads executing in parallel the total runtime 

needed for the multichannel filtration decreased from 11.02 ms to only 0.82 ms what represents 13.4 fold 

speedup and accounts for 93% saving of the serial runtime of the filtration module. For the sake of 

completeness it is important to mention that the implemented high-order digital filter has more or less 
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illustrative character because the time delay of this filter is approximately 1 second, thus its real-time nature 

can be debatable. However, this simple experiment demonstrated computational power of the GPU. Thanks 

to the massively parallel algorithms running on the GPU the computation time of the filtration decreased 

approximately by one order.  

 

8.2 Forward modeling results 

In this chapter the term ”Propeiko” will serve as the synonym of the proposed forward model consisting of 

the eikonal solver and ECG solver. First the runtimes of both Propeiko solvers are discussed, and 

consequently the activation times and ECGs computed by Propeiko are compared with their counterparts 

obtained from a large-scale R-D model called Propag [3], [4], that was used as reference. At this point it is 

important to point out two facts. First, Propag similarly to Propeiko enabled to solve the desired output on a 

structured grid of the ventricular model. Second, similar patient-specific ventricular and torso geometries 

were used in order to compare corresponding outputs of both models. Small differences between geometries 

were caused by downsampling of the 0.2 mm ventricular mesh used by Propag to the 1.0 mm ventricular 

mesh used by Propeiko. In practice, monodomain equation of Propag was used for the computation of action 

potentials (and hence also activation times) on the 0.2 mm mesh and the obtained activation sequence was 

downsampled to a 1.0 mm mesh for the comparison with Propeiko. The computation of the ECGs by both 

models was performed on a torso model with 1 mm resolution. In Propag the bidomain equation was used for 

the computation of ECGs and the gradients of action potentials computed by monodomain equation were 

used as the currents. For the computation of the lead fields, the bidomain equation was used, with the 

currents applied in the corresponding electrode positions on the torso surface. 

The ventricular geometries used in the experiments consisted of the layered structure of substances 

mentioned in the Chapter 5.1 and shown in Figure 5.2. Each ventricular model consisted of eight layers. Four 

transmural layers called fast, endo, mid, and epi were created in the right ventricle (RV) and similar four 

transmural layers were created also in the left ventricle (LV). During the experiments the conduction velocity 

in the fast layers of both ventricles was set higher than in the remaining layers. For patient 3 the conduction 

velocity was set higher only in the fast layer of the RV. The values of parameters used in the simulations are 

listed in Appendix A of proposed thesis. In Table 8.1 is provided relevant information about the used 

ventricular meshes. 

  

Patient Mesh dimension Number of nodes Number of tetrahedra Number of cubes 

1 127 x 124 x 187 289 252 2 314 016 230 968 

2 148 x 118 x 179 350 584 2 804 672 290 166 

3 130 x 116 x 161 248 140 1 985 120 202 942 

4 109 x 92 x 157 222 951 1 783 608 187 534 

Table 8.1: Specification of the ventricular meshes used in the experiments (mesh dimension correspond to 

the dimension of the whole heart including atria). 
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 Both proposed solvers were implemented in the C++ and CUDA C/C++ languages and are destined to 

execute on the CUDA GPUs. The only required external library was Thrust [37], included in CUDA toolkit. 

In all experiments single precision floating point representation of numbers was used. 

 Both solvers were tested on two different Nvidia GPUs. One of them was a low-end (LE) GPU GeForce 

GT 650M on a personal laptop, and the another one was a high-end (HE) GPU Tesla K20X on a node of the 

supercomputer Piz Daint at CSCS [38]. Parameters of both GPUs are given in Table 8.2. Finally, in Table 8.3 

are listed parameters of another supercomputer at CSCS called Piz Dora [38] that was used to run the R-D 

model.  

 

GPU 
Number of 

cores 
Core clock 

Main memory 

bandwidth 

Main memory 

size 

Peak performance 

(single precision) 

LE 384 0.950 GHz 80 GB/s 2 GB 0.73 Tflops 

HE 2688 0.732 GHz 250 GB/s 6 GB 3.95 Tflops 

Table 8.2: Specification of the GPUs used in experiments. 

 

Model 

Number of 

compute 

nodes 

Number of 

cores per 

node 

Core clock 

Memory 

bandwidth 

per node 

Memory 

size 

per node 

Peak 

perform. 

Cray XC40 1256 36 2.1 GHz 137 GB/s 64 GB 1.509 Pflops 

Table 8.3: Specification of the supercomputer Piz Dora at CSCS. 

 

8.2.1 Comparison of eikonal solver runtimes 

In Figure 8.2 are shown the runtimes (in seconds) of Jacobi iterative method (JIM) and Fast iterative method 

(FIM) on the LE and HE GPU. Important observation is that both methods enabled to compute the activation 

sequence in the ventricles in the order of seconds. Moreover, the runtimes of the FIM executed on the HE 

GPU were below one second. 

 

        

Figure 8.2: Runtimes (in seconds) for JIM and FIM on the LE and HE GPU. (Logarithmic scale is used on 

the vertical axis.) 
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A positive feature of the JIM is it scaling. The JIM ran on the HE GPU almost 7-times faster than on the 

LE GPU, what represents almost ideal scaling since the HE GPU has exactly 7-times more cores than the LE 

GPU. On the others side, the disadvantage of this method is that at each iteration it evaluates the activation 

times at all nodes of the ventricular mesh, thus also at the nodes that are far away from the excitation front. In 

order to avoid this problem the FIM was implemented. The FIM allowed evaluating of the activation times 

only in a narrow band of nodes on the excitation front. As it is shown in Figure 8.2, the runtimes of the FIM 

(for all four patients) were bellow 3.5 seconds on the LE GPU and bellow 1 second on the HE GPU. 

Compared to the JIM, 3 to 7-fold speedup was achieved on the LE GPU and 2 to 3-fold speedup was 

achieved on the HE GPU. This means that the FIM enables to obtain the activation sequence also on a 

common laptop within a few seconds, and moreover, execution times applicable for real-time simulations 

may be reached on the HE GPU. The bottleneck of the FIM is it scaling. The FIM ran on the HE GPU on 

average only 3.5 times faster than on the LE GPU. Such a behavior may be explained by the fact, that a 

relatively small number of threads did computations at each iteration. 

 It is very interesting to compare the runtimes of the proposed eikonal solver with the runtime resulting 

from the simulation of ventricular action potentials by Propag (reference R-D model). For sure, the Propag 

runtimes depend on the number of CPU cores used and their speed. The average runtimes achieved when 

running Propag on Piz Dora (see Table 8.3) with number of processes around 800 (1 thread per process) are 

discussed in the following section. The monodomain simulations of ventricular depolarization on a mesh 

with resolution of 0.2 mm took around 10 minutes. The corresponding bidomain simulations would run about 

20 times longer [3], thus around 200 minutes. In addition tens of gigabytes of memory are required to run 

these simulations. From this discussion it is important to realize the significant performance difference 

between the proposed eikonal solver and the more realistic R-D model. It is important to realize that the 

eikonal solver enables to simulate activation sequence in the heart ventricles even on a personal laptop 

equipped with 2 GB of GPU DRAM in about 3 seconds. 

Additional discussion about the impact of the warp scheduling, atomic operations, texture memory and 

tailored data structures on the performance of the proposed eikonal solver, as well as the comparison of 

proposed eikonal solver with recently developed eikonal solver of Fu et al. [39] (destined for solving the 

eikonal equation on three-dimensional, unstructured, tetrahedral domains), can be found in proposed thesis. 

 

8.2.2 Comparison of ECG solver runtimes 

The runtimes (in seconds) of the Simple method (SM) and Fast method (FM) on the LE and HE GPU are 

shown in Figure 8.3. Both methods computed 600 ms long signals of the 12-lead ECG. Figure 8.3 shows the 

runtimes of both methods assuming the ECG resolution of 0.5 ms and 1.0 ms. Important observation is that 

the SM method runtime on the GPU was of the order of seconds, while the FM runtime was of the order of 

tens of milliseconds. 
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Figure 8.3: Runtimes (in seconds) of SM and FM on the LE and HE GPU. Results for ECG resolution of  

0.5 ms and 1.0 ms are shown on the left and right, respectively. (Logarithmic scale is used on the vertical axis.) 

 

The runtime of the SM on the HE GPU (for all four patients) was bellow 3.2 seconds for 0.5 ms ECG 

resolution and below 1.7 seconds for 1.0 ms ECG resolution. The SM scaled very well on the HE GPU with 

an average scaling factor around 6.35. 

Now, let us have a look on the runtimes of the FM. As it can be seen in Figure 8.3, the computation of the 

12-lead ECG took only tens of milliseconds on both GPUs. The runtimes of the FM, for all four patients and 

for the ECG with the higher of the two tested resolutions, were bellow 220 milliseconds on the LE GPU and 

bellow 50 milliseconds on the HE GPU. The runtimes of the FM for the ECG with the lower of the two 

tested resolutions were bellow 110 ms on the LE GPU and bellow 30 milliseconds on the HE GPU. Purely 

from the computational point of view, the FM is in average more than 80 times faster than the SM. The 

scaling of the FM was not optimal. The FM ran on the HE GPU on average only 4.5 times faster than on the 

LE GPU. Not optimal scaling was likely caused by the fact that different warps required different number of 

clock cycles to finish their execution. As a consequence of unbalanced execution times of different warps in 

the computational domain, the linear scaling of the FM was broken. 

 It is further worthwhile to mention that both proposed ECG solvers take as one of their inputs the lead 

field. On the one hand, from the computational point of view of the ECG solver, the precomputed lead field 

represents a beneficial input parameter. On the other hand, the computation of the lead field itself might be 

considered as the bottleneck of proposed ECG solvers. Each time the conduction velocities of the ventricular 

or torso regions are changed, the lead field has to be recomputed by the bidomain model. The computation of 

the lead fields for the standard 12 ECG leads takes on Piz Dora (with around 800 processes and 1 thread per 

process) approximately 3 minutes. However, once the lead field is available, the proposed ECG solvers can 

be effectively used to simulate the ECGs. If it is necessary to adjust the conduction velocities only in the 

ventricles, it is to a certain extant possible to avoid the recomputation of the whole lead field. The desired 

value of the conduction velocity in the ventricles can be set easily by tuning the membrane parameter   (see 

(3.5)). 

Similarly like in the previous chapter it is interesting to compare the runtimes of the proposed ECG solver 

with the runtime resulting from the simulation of ECGs by Propag. As it was already mentioned, action 

potentials generated by the monodomain equation were used for the computation of the ECGs in Propag. The 
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simulation of the action potential of 500 ms length (the depolarization plus the repolarization) took around 22 

minutes. Once the monodomain simulation was done, the bidomain simulation was performed to compute 

the potential field everywhere in the torso. The computation of this potential field took around 14 minutes 

and required around 350 GB of memory. The last step, the computation of 12-lead voltages from known 

potentials at specific nodes on the torso surface took obviously negligible time. Again, the runtimes on Piz 

Dora (see Table 8.3) with around 800 processes were discussed. To summarize, for Propag it took minutes to 

simulate the standard 12-lead ECG, while for Propeiko it took only a few seconds. 

Additional discussions about the impact of the warp scheduling, atomic operations, texture memory and 

tailored data structures on the performance of the proposed ECG solver can be found in proposed thesis. 

 

8.2.3 Comparison of activation times computed by Propag and Propeiko 

As it was already mentioned in Chapter 8.2, the activation times were compared on four patient-specific 

geometries with 1 mm resolution and with model parameters given in Appendix A of proposed thesis. The 

activation times were compared in terms of the absolute error at corresponding ventricular nodes. The results 

for Patient 1 are shown in Figure 8.4. This figure shows a three-dimensional view of the activation sequence 

and the distribution of the absolute error. The plotted results for remaining three patients can be found in 

proposed thesis. The most relevant results for all 4 patients are summarized in a compact form in Table 8.4. 

 

Patient 

Absolute error [ms] Number of nodes [%] 

minimum maximum 
Absolute error 

≤ 5 ms  

Absolute error 

≤ 10 ms 

1 2.67x10
-5

 17.31 77 96 

2 3.05x10
-5

 30.08 69 92 

3 0.0 23.39 63 90 

4 4.58x10
-5

 14.56 84 99 

Table 8.4: Absolute error (in milliseconds) between Propag and Propeiko activation times. 

 

The results showed that the absolute errors of the activation times varied between 0.0 and 30.08 ms. The 

absolute error of the order of tens of milliseconds is quite high, when assuming normal duration of the 

depolarization (QRS complex in ECG) about 80 ms. However, closer evaluation of the absolute error at 

individual ventricular nodes showed that, the absolute error was equal or less than 5 ms in average at 73% of 

nodes, and equal or less than 10 ms at 94% of nodes. Visually, the activation sequence computed by 

Propeiko exhibited similar propagation pattern as the activation sequence computed by Propag. In the three-

dimensional distribution of the absolute error no dominant pattern was observed. If we take into account the 

fact that the computation of the activation sequence using Propeiko takes a few seconds on a personal laptop 

in contrast to minutes required to obtained corresponding solution on HPC machines using Propag, we may 

consider this approximation of the activation sequence as acceptable. 

To reason the differences between the Propag and Propeiko activation times thoroughly, additional 

experiments are required. In any case, besides the numerical errors of both methods, other possible reasons 

influencing the results could be the small differences in the fiber orientation and the inherent structure 
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between the full and the downsampled ventricular geometries. In Propeiko the material properties and the 

fiber orientation are defined directly on the 1.0 mm mesh. On the other hand, in Propag the material 

properties and the fiber orientation are defined on the 0.2 mm mesh, and this finer mesh is used also for the 

simulation of the action potentials. The extracted activation times are than downsampled and saved on the 1 

mm mesh. Indeed, these slight dissimilarities could affect the solution. 
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Figure 8.4: Comparison of the activation times computed by Propag and Propeiko for Patient 1. In the upper part 

of the figure the earliest epicardial activation of the right ventricle, the latest epicardial activation of the left 

ventricle, and the endocardial activation of both ventricles is shown from left to right. (Two complementary 

longitudinal sections across the heart ventricles and septum are used to show the endocardial activation.) 

 

8.2.4 Comparison of ECGs computed by Propag and Propeiko 

The ECGs were computed according to the standard 12-lead ECG definitions (see [9]), hence three bipolar 

limb leads  (        ), three augmented unipolar limb leads  (           ), and six unipolar precordial 

leads (        ) were computed. Propag used bidomain equation to compute the ECGs, while Propeiko used 

the lead field approach. In order to compare Propag and Propeiko ECGs four assessment criteria were 

evaluated: an absolute error (ABS), RMS error (RMS), RMS relative difference (RMS_RD), and correlation 

coefficient (CC). These four criteria were computed separately for the depolarization and repolarization 
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segment of each of the 12 leads. For the ECGs computed using the Simple method, both, the depolarization 

(DEPO SM) and repolarization (REPO SM) segment were evaluated, while for ECGs computed using the 

Fast method only the depolarization segment (DEPO FM) was evaluated. The length of the DEPO segment 

was derived from the minimum and maximum activation time. The REPO segment started right after the 

DEPO segment and was terminated by the last simulated ECG sample (the sample corresponding to 500 ms).  

In this Summary only the observed values of the RMS_RD and CC for DEPO SM, DEPO FM, and REPO 

SM segments are plotted in Figure 8.5 to Figure 8.7, respectively. However, these plotted results are 

supplemented by Table 8.5, in which the minimum (min), maximum (max) and average (avg) values of all 

four evaluated criteria across all patients and all leads are summarized. The simulated ECGs for Patient 1 are 

shown in Figure 8.8, hence one can also visually check the polarity, timing, and shape of computed ECGs. 

The simulated ECGs for remaining three patients can be found in proposed thesis. 

 

 

  

Figure 8.5: DEPO SM segment of standard 12-lead ECG – Comparison of ECGs computed by Propeiko and Propag. 

 

 

 

  

Figure 8.6: DEPO FM segment of standard 12-lead ECG – Comparison of ECGs computed by Propeiko and Propag. 

 

 

 

  

Figure 8.7: REPO SM segment of standard 12-lead ECG – Comparison of ECGs computed by Propeiko and Propag. 
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Segment 
ABS [mV] RMS [mV] RMS_RD CC [%] 

min max avg min max avg min max avg min max avg 

DEPO SM 0.14 0.69 0.37 0.06 0.29 0.15 0.10 1.69 0.47 - 34.97 99.69 85.23 

DEPO FM 0.15 1.03 0.39 0.05 0.39 0.17 0.11 1.71 0.51 - 29.48 99.16 85.05 

REPO SM 0.12 2.65 0.63 0.05 0.91 0.24 0.89 8.23 2.11 - 88.08 96.87 27.98 

Table 8.5: Standard 12-lead ECG – Comparison of ECGs computed by Propeiko and Propag (all four 

patients, all 12-leads). 

 

The QRS complex (DEPO segment) computed using both, Propeiko SM and FM exhibited good 

compliance with the QRS complex generated by Propag. For the DEPO FM segment following average 

values of evaluated criteria were found: ABS of 0.39 mV, RMS of 0.17 mV, RMS_RD of 0.51, and CC of 

85.05 %. The DEPO SM segment exhibited slightly better results than the DEPO FM segment. In general, in 

majority of QRS complexes the shape and polarity matched what was best quantified by the CC. However, as 

it can be seen in Figure 8.5 and Figure 8.6, also one clear outlier in lead V6 of Patient was found, and two 

leads with CC below 40%, namely aVL in Patient 3 and V3 in Patient 2 were fournd. Visual inspection of 

these leads showed that the polarity of lead V6 was reversed, and that in the aVL and V3 lead, the Q wave 

was of the opposite polarity.  

The experiments further showed variations in the QRS complex amplitude. We found the RMS_RD and 

ABS to be the most sensitive indicators of amplitude differences. The ABS varied from 0.14 to 1.03 mV and 

RMS_RD from 0.10 to 1.71. From the quantitative point of view, the RMS_RD and ABS acted as two 

complementary indicators. The RMS_RD more clearly signalized the differences in lower amplitude leads, 

thus in the majority of simulated leads, while the ABS better indicated the differences in higher amplitude 

leads, namely in the precordial leads V1, V2 or V3. Such an observation is reasonable since, the differences 

between Propag and Propeiko QRS complexes for leads V1, V2 and V3 were relative small when compared 

with the amplitudes of these leads, and hence the RMS_RD smoothed these differences. To conclude, in the 

majority of leads, the DEPO segments generated by Propeiko SM and FM exhibited acceptable differences 

when compared with Propag depolarization segments. 

Let’s now have a look on the comparison of the repolarization segments. Following average values of 

evaluated criteria were found for the REPO SM segment: ABS of 0.63 mV, RMS of 0.24 mV, RMS_RD of 

2.11, and CC of 27.98 %. Clearly, the RMS_RD and CC signalized bad match between between Propeiko 

and Propag DEPO segments. Visual inspection of the leads showed differences in the shape, amplitude and 

polarity of the T wave, what is in agreement with the result plotted in Figure 8.7. In general, the best 

agreement in terms of the shape was achieved for precordial leads V1, V2 and V3, but on the other side the 

ABS for these three leads was maximal. In the remaining leads no significant similarities were found. To 

conclude, the REPO segments generated by Propeiko did not match well with the Propag repolarization 

segments. Hence, further investigation is required to identify possible error sources. Among the other, 

numerical errors of both models as well as the small differences in geometry arise as possible candidates.  

Nevertheless, the QRS complexes matched quite well. And again, if we take into account the fact that the 

computation of the QRS complexes using Propeiko takes a hundreds of millisecond on a personal laptop in 

contrast to minutes required to obtain corresponding QRS complexes by running Propag on a supercomputer, 
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we may consider these results as very promising and satisfactory. Moreover, we would like to point out that 

despite many works have been devoted to the numerical simulation of cardiac electrophysiology, only a few 

of them provided also simulations of the complete 12-lead ECG. To the best of our knowledge, none of the 

existing approaches combined the eikonal approach and the lead field concept to show realistic 12-lead ECG 

simulations on patient-specific geometries, as we did. 

 

 

Figure 8.8: Comparison of standard 12-lead ECG computed by Propag and Propeiko for Patient 1. ECGs 

computed by SM and FM are shown on the left and right side, respectively. 

 

8.3 Matching of simulated and measured activation times 

In this chapter the initial attempts with the optimization procedure for finding the best agreement between 

simulated and measured activation times (ATs) are examined. The simulated ATs were generated by the 

proposed eikonal solver, the measured ATs were obtained by the use of NOGA endocardial mapping system 

(Johnson & Johnson company). The full set of measured ATs consisted of the ATs measured from the inner 

surface of the right ventricle (RV), left ventricle (LV), and coronary sinus (CS). For each of the four patients 

ATs were measured at more than 200 endocadial points. 

The experiments were performed by the use of the same ventricular geometries and eight layers of 

substances as mentioned in Chapter 8.2, hence four transmural layers called fast, endo, mid, and epi were 

assumed in both ventricles. The goal of the optimization procedure was to match the simulated and measured 

ATs by iterative improving of the locations of single early activation sites (EASs) and by adapting the 

conduction velocities in two ventricular regions. One of the ventricular regions mimicked the fast Purkinje 

fibers and was represented by the fast RV layer, another one corresponded to the ventricular myocardium and 

was represented by a composition of the remaining 7 layers. During the optimization procedure the 

conduction velocities were adjusted by tuning the membrane parameter   only. The conductivity values were 

kept fixed. The values of the parameters used in the experiments as well as the detail description of complex 

optimization procedure are described in the proposed thesis. We let the optimization procedure to execute on 
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a single core of a supercomputer node equipped with Intel Xeon E5-2670 processor (2.60 GHz, 32 GB 

RAM) and HE GPU with parameters given in Table 8.2. In Figure 8.9 scatter plots showing the relationship 

between simulated and measured activation times for Patient 1 is depicted. The scatter plots of remaining 

three patients can be found in proposed thesis.  

 

 

Figure 8.9: Scatter plot of activation times for Patient 1. 

 

The scatter plots of all four patients showed that the activation times were concentrated in the vicinity of 

the regression line, hence we observed relatively high degree of correlation with CCs from 85 % to 94 %. 

The slope of the regression line was in all experiments equal to 1.0. For Patient 2 and Patient 3 the regression 

line was shifted from the identity line more significantly than for Patient 1 and Patient 4. However this shift 

can be removed by additional tuning of model parameters, namely by setting higher conduction velocities in 

evaluated regions.  

From the computational point of view it is very important that the fine tuning of model parameters for a 

single patient was achieved in less than 5 minutes. In practice, the eikonal solver was invoked more than one 

hundred times with different sets of input parameters. If the monodomain simulations were used instead of 

the eikonal simulation in the optimization procedure, they would run roughly more than half a day. 

 

9  Conclusion 

A GPU-accelerated fully anisotropic model for the simulation of the activation sequence in cardiac tissue and 

computation of ECGs was developed. The activation sequence was modeled by the eikonal description of the 

spread of excitation in the heart. The ECGs were computed by coupling the eikonal approach with the lead 

field concept and the bidomain representation of cardiac sources. More specifically, to compute the ECGs, 

first the timing values of the activation sequence were used to obtain the transmembrane potential field from 

precomputed action potential waveforms, next this transmebrane potential field was scaled by the local tissue 

conductivities to obtain cardiac sources distributed through the heart, and finally the distributed cardiac 

sources were related by the precomputed lead fields to the evaluated lead voltages on the body surface.  

Simulations performed on four patient-specific geometries with 1 mm resolution showed that the model 

can simulate the activation sequence and standard 12-lead ECG on a high-end CUDA GPU in a few seconds. 
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If only QRS complex is of interest, the real-time execution speed may be reached. Simulated activation times 

and ECGs were compared with their counterparts generated by the R-D model. Satisfactory match was found 

between activation sequences as well as QRS complexes. The T waves exhibited large dissimilarities, hence 

deeper study of the parameter setting is required to achieve better agreement. Practical applicability of the 

model was demonstrated on the inverse procedure that used the measured activation times to estimate the 

location of a single early activation site and the values of regional conduction velocities. Thanks to the 

computational speed of the proposed model, the fine tuning of model parameters was completed within a 

couple of minutes and relatively high degree of correlation between simulated and measures activation times 

was achieved. The two main limitations of the proposed model are the inability of the eikonal approach to 

investigate the repolarization phase of cardiac cycle and the need of R-D model to precompute the lead field 

for individual heart and torso geometry. 

To conclude, the main goal of this study was to build a GPU-accelerated fully anisotropic forward model 

for the simulation of the activation sequence in the cardiac tissue and for the computation of ECGs. In spite 

of its limitations, the proposed forward model essentially fulfills these requirements and is therefore a good 

candidate to address the solution of inverse problems. 

 

9.1 Contributions of the thesis 

Although the fundamental theoretical concepts encompassed in the proposed model are known for many 

years, this thesis made several contributions to the common knowledge.  

First, two methods for solving the three-dimensional anisotropic eikonal equation on structured grid were 

proposed. These methods extended the versatility of the already existing Jacobi iterative method and Fast 

iterative method. In order to compute the activation times, three core elements were proposed, each of which 

is closely tied with a tailored collection of tetrahedra called agglomerate. First, custom tetrahedralization of 

structured mesh was proposed, next, a unique eikonal solver that takes into account challenging cardiac 

tissue anisotropy was developed, and furthermore, the data structures necessary for efficient mapping of data 

to parallel GPU threads were designed. To best of our knowledge, there exist studies dealing with the 

computational techniques for solving the eikonal equation on structured grids, but they do not discuss a 

three-dimensional anisotropic eikonal solver and the data structures suitable for the GPUs.  

Second, two methods for the computation of ECGs were proposed, namely the Simple method and the 

Fast method. The Simple method takes into account the transmural heterogeneity in the action potential 

duration and supports the simulation of both, depolarization and repolarization phase of cardiac cycle (the 

QRS complex and T wave in ECGs, respectively). The Fast method assumes that the cardiac sources are 

distributed only on the surface of the excitation wavefront, hence it is suitable for the simulation of the 

depolarization phase only. Important is that for both methods the fully anisotropic nature of cardiac tissue as 

well as the anisotropy and heterogeneity of torso regions is incorporated into the computation of the ECGs. 

From the computational point of view it is worthy to point out the extremely short execution times of the Fast 

method that even on the low-end GPU generated the 12-lead ECG in tens of milliseconds. Hence, it 

represents a promising method for speeding up the inverse solutions utilizing the QRS portion of the ECG 

curve as a feedback parameter. To conclude, although many works have been devoted to the numerical 
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simulations of cardiac electrophysiology, only a few of them provided also simulations of the complete 12-

lead ECG. To the best of our knowledge, none of the existing approaches combined the eikonal approach and 

the lead field concept to simulate realistic 12-lead ECG, as we did. 

Third, we would like to strength that GPU-accelerated forward model was developed. Each of the four 

above mentioned methods supports massively parallel computations on the GPUs. The scalability tests 

showed that the proposed algorithms can exploit the performance of the GPUs with higher number of 

processor cores, what is highly valuable feature with respect to current trends in HPC hardware design. 

Thanks to the massive parallelism, tailored data structures and thread organization that maintained high 

computational density, the runtimes in the order of seconds were achieved even on a today’s personal laptop 

equipped with a low-end GPU. When compared with the runtimes of R-D models, a speedup of several 

orders was achieved. On the other side, the proposed eikonal model solution is just an approximation of the 

state-of-the-art R-D model solution. Hence, it is important to perceive the proposed model as a 

computationally fast complementary tool that can be effectively used in various inverse procedures, e.g. to 

estimate the locations and number of early activation sites and the conduction velocities in the myocardial 

tissue. The outputs of these inverse procedures can be consequently used as initial guesses in R-D models, by 

which the final tuning of the heart activation may be performed to identify the diseased regions of the heart. 

This thesis discussed only an inverse procedure that made use of measured activation time. However the 

future goal is to estimate the underlying quantities directly from measured ECGs. This is highly relevant 

because it is not desirable to use cardiac catheters in all patients prior to the choice of treatment. This 

problem is much broader than the first one, and has to be viewed as a long-term goal. 
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