Ing. Lukáš Palkovič

Autoreferát dizertačnej práce

VYUŽITIE INERCIÁLNYCH SNÍMAČOV PRI RIADENÍ ŽERIAVOV

na získanie akademického titulu
doktor (philosophiae doctor, PhD.)
v doktorandskom študijnom programe
5.2.14 Automatizácia a riadenie

Bratislava 2014
Dizertačná práca bola vypracovaná v dennej forme doktorandského štúdia na Ústave robotiky a kybernetiky Fakulty elektrotechniky a informatiky Slovenskej technickej univerzity v Bratislave.

** Predkladateľ: Ing. Lukáš Palkovič**

Slovenská technická univerzita v Bratislave
Fakulta elektrotechniky a informatiky
Ústav robotiky a kybernetiky
Ilkovičova 3, 812 19 Bratislava

** Školiteľ:** prof. Ing. Peter Hubinský, PhD.
Slovenská technická univerzita v Bratislave
Fakulta elektrotechniky a informatiky
Ústav robotiky a kybernetiky
Ilkovičova 3, 812 19 Bratislava

** Oponenti:** prof. Ing. Boris Rohaľ-Ilkiv, CSc.
Slovenská technická univerzita v Bratislave
Strojníčka fakulta
Ústav automatizácie, merania a aplikovanej informatiky
Námestie slobody 17, 812 31 Bratislava
Prof. Ing. Aleš Janota, PhD.
Žilinská univerzita v Žiline
Elektrotechnická fakulta
Katedra riadiacich a informačných systémov
Univerzitná 8215/1, 010 26 Žilina

Dizertačná práca bola podporená z projektov VEGA 1/0178/13 a APVV-0261-10.

Autoreferát bol rozoslaný
Obhajoba dizertačnej práce sa koná
dňa

na Fakulte elektrotechniky a informatiky STU v Bratislave, Ilkovičova 3, Bratislava, v miestnosti D424 pred komisiou pre obhajobu dizertačnej práce doktorandského štúdia vymenovanou predsedom spoločnej odborovej komisie 5–2–14 Automatizácia.

prof. RNDr. Gabriel Juhás, PhD.
dekan FEI STU
<table>
<thead>
<tr>
<th>Obsah</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Úvod ...</td>
</tr>
<tr>
<td>2 Vybrané použité algoritmy riadenia</td>
</tr>
<tr>
<td>2.1 Zvýšenie tlmenia dominantnej pôlovej dvojice</td>
</tr>
<tr>
<td>2.2 Spektrálna úprava vstupného signálu</td>
</tr>
<tr>
<td>2.3 On-line tvarovanie ..</td>
</tr>
<tr>
<td>2.4 ZV tvarovač (Zero Vibration Shaper)</td>
</tr>
<tr>
<td>3 Meranie akcelrometrom na bremene</td>
</tr>
<tr>
<td>3.1 Meranie výchylky - statický režim</td>
</tr>
<tr>
<td>3.2 Dynamický režim ...</td>
</tr>
<tr>
<td>4 Adaptívne nastavovanie tvarovača</td>
</tr>
<tr>
<td>5 Riadenie ...</td>
</tr>
<tr>
<td>6 Určenie základnej orientácie voči súradnicovému systému základne</td>
</tr>
<tr>
<td>6.1 Určenie sklonu a klopenia pomocou akcelrometra</td>
</tr>
<tr>
<td>6.2 Určenie orientácie v horizontálnej rovine pomocou akcelrometra</td>
</tr>
<tr>
<td>6.3 Určenie orientácie v horizontálnej rovine pomocou gyroskopu alebo magnetometra</td>
</tr>
<tr>
<td>7 Použitý hardvér ..</td>
</tr>
<tr>
<td>7.1 Mechanika ...</td>
</tr>
<tr>
<td>7.2 Hardvér snímačovej jednotky ..</td>
</tr>
<tr>
<td>7.3 Hardvér riadacej jednotky ...</td>
</tr>
<tr>
<td>8 Meranie a dosiahnuté výsledky ...</td>
</tr>
<tr>
<td>8.1 Voľné kyvadlo bez riadenia ..</td>
</tr>
<tr>
<td>8.2 Polohovanie bez riadenia ..</td>
</tr>
<tr>
<td>8.3 Polohovanie s riadením s derivačnou spätnou väzbou</td>
</tr>
<tr>
<td>8.4 Polohovanie so ZV tvarovačom ..</td>
</tr>
<tr>
<td>8.5 Polohovanie s riadením s natočeným snímačom so identifikovanou orientáciou bremena</td>
</tr>
<tr>
<td>9 Pojednanie o praktickej realizovateľnosti</td>
</tr>
<tr>
<td>9.1 Tvarovanie riadaceho signálu ..</td>
</tr>
<tr>
<td>9.2 Riadenie s derivačnou spätnou väzbou</td>
</tr>
<tr>
<td>10 Záver ..</td>
</tr>
<tr>
<td>10.1 Prínosy dizertačnej práce ..</td>
</tr>
<tr>
<td>11 Bibliografia ..</td>
</tr>
</tbody>
</table>
1 Publikované práce autora .. 34

1.1 Autorské osvedčenia, patenty, objavy ... 34
1.2 Vedecké práce v zahraničných nekarentovaných časopisoch ... 34
1.3 Vedecké práce v domácich nekarentovaných časopisoch .. 34
1.4 Vedecké práce v domácich recenzovaných vedeckých zborníkoch, monografiách 35
1.5 Publikované príspevky na zahraničných vedeckých konferenciách .. 35
1.6 Publikované príspevky na domácich vedeckých konferenciách ... 36
1.7 Rôzne publikácie a dokumenty, ktoré nemožno zaradiť do žiadnej z predchádzajúcich kategórií ... 36
Využitie inerciálnych snímačov pri riadení žeriavov

Abstrakt

V súčasnosti sa v podnikovej oblasti stále viac tlačí na efektivitu jednotlivých činností, čím sa znižujú náklady a zvyšuje celková konkurencieschopnosť. To sa samozrejme vzťahuje aj na výrobné a logistické zariadenia, ktoré treba využívať v čo najvyššej miere pri čo najkratších výrobných cykloch. Pri tom všetkom sa dbá na bezpečnosť.

Jedným z javov, ktoré v tomto smere nie zrovna hrajú do karát je aj kmitanie systémov. Neželané kmity spôsobujú zniženie kvality riadenia a najmä predlžujú dobu operácie. Okrem iného sa to týka aj žeriavov.

Práca obsahuje modely vybraných kmitavých systémov a zaobiera sa metódami ich riadenia, pričom kladie dôraz práve na obmedzenie vzniknutých reziduálnych kmitov.

V ostatnom období sme svedkami veľmi rýchleho vývoja v oblasti MEMS technológií a ich nasádzania v rôznych oblastiach. Veď dnes už každý smartfón obsahuje aspoň akcelerometer.

Ťažiskom tejto práce je skúmanie možností využitia MEMS snímačov práve na riadenie žeriavov tak, že sa tieto snímače umiestnenia na bremeno žeriava a budú snímať pohybové veličiny bremena. Analyzované sú zrýchlenia, rotácie a magnetická indukcia snímané na bremene a je navrhnutý algoritmus zmeraných signálov práve za účelom tlmenia kmitov. Iná metóda rozoberá identifikáciu vlastnej frekvencie kmitov za účelom nastavenia dopredného riadenia. Okrem toho sme sa venovali možnosti ľubovoľnej orientácie snímača na bremene a príslušnej transformácie do orientácie vhodnej na riadenie.

Navrhnuté metódy spätnoväzobného riadenia boli otestované na reálnom modeli žeriava.

Kľúčové slová riadenie žeriava, tvarovač vstupného signálu, MEMS snímače, akcelerometer, gyroskop
Using MEMS sensor for crane control

Abstract

These days there is a significant demand on the effectiveness of the processes in the companies in order to lower the costs and increase the competitiveness of the business. This has to do with manufacturing and logistical processes and technologies. They have to be used as much as possible and their manufacturing cycles must be shortened while keeping the highest safety standards. One of the effects that plays against these requirements is residual vibrations. These undesirable vibrations cause lower control quality, especially increase of the settling time. This thesis contains several models of oscillating mechanical systems and deals with control systems designed to deal with the residual vibrations. One of the expanding technological areas of the last years have been MEMS technologies and their use in various areas of our lives. Note that every smartphone contains at least an accelerometer. The core of this thesis is to investigate the possibilities to use the MEMS sensors in the control of the cranes. The idea is to locate such sensor on the payload. We analyze the accelerations, rotations and magnetic induction measured on the payload during the oscillations. Then we design a controller using these signals to reduce the oscillations. A different method is concerned with the identification of the natural frequency of the oscillations for a feed forward control. We also analyzed the possibilities how to deal with an arbitrary orientation of the sensor on the payload and found a way how to transform measured data to an orientation convenient for the control algorithms. The proposed methods were verified on a real crane model.

Keywords: MEMS sensor, accelerometer, crane control, gyroscope, input signal shaper
1 Úvod

Ekonomický tlak na minimalizáciu nákladov, zefektívňovanie technologických cyklov a zvyšovanie nárokov na ponúkané výrobky a služby vedie k neustálym technologickým inováciám a vylepšeniam. Nové prístupy sa hľadajú aj v oblastiach, v ktorých boli doterajšie riešenia plne vyhovujúce. V takýchto prípadoch môže často iný pohľad na vec, ktorý vychádza z dôkladnej analýzy príslušnej problematiky. To pomôže nájsť procesy s nižšou priepustnosťou brzdiace danú prevádzku a príčiny spomalenia. Po tomto kroku je treba sa zamerať na elimináciu tohto problému.

Táto práca sa venuje analýze kmitavých systémov a metódam riadenia používaných pre zamedzenie kmitania. Hlavná pozornosť je venovaná mostovým žeriavom, pričom sa snažíme poskytnúť nový pohľad do tejto oblasti.

Našu pozornosť upútalas v súčasnosti intenzívne sa rozvíjajúca oblasť snímačov na báze mikro-elektromechanických systémov (MEMS), a to najmä akcelerometrov a gyroskopov, ktoré slúžia na meranie veličín pohybu a orientácie v priestore. Tu sa rozvínulo množstvo rôznych variantov systémov, ktoré sa vyznačujú nižším tlmením a množstvom inovácií v tejto oblasti.

V práci zistujeme, aký charakter majú jednotlivé signály, ktoré sa dajú na bremene zmerať a hľadáme možnosti ich využitia.

Jednou z možností je meranie zrýchlení za účelom identifikácie vlastnej frekvencie kmitavého systému. Tá sa potom môže využiť na nastavenie parametrov tzw. tvarovačov riadiaceho signálu, čo spadá do problematiky dopredného riadenia.

Inou možnosťou je využitie signálu z gyroskopov na účely riadenia so spätnou väzbou. Tu sa javí ideálna možnosť využitia signálu z gyroskopu v derivácnej spätnej väzbe.

Osobitná pozornosť je venovaná problému rôznej orientácie snímača voči žeriavu, resp. bremenu. Boli vyvinuté algoritmy pre zistenie tejto orientácie za účelom transformácie zmeraných údajov do vhodnej podoby.
Za účelom praktického overenia bola na pracovisku zhotovená vhodná snímacia doska a riadiaca elektronika. Tie boli potom využité na riadenie modelu žeriava s krokovými motormi vzniknutého úpravou komerčnej frézy. Na tejto hardvérovej zostave boli vybrané algoritmy dôkladne otestované.
2 Vybrané použité algoritmy riadenia

Pre elimináciu kmitov v kmitavých systémov možno postupovať rôznymi spôsobmi počnúc spomalením pracovného cyklu, pokračujúc mechanickým spevnením, tvarovaním vstupného signálu až po pomerne náročné metódy optimálneho stavového riadenia využívajúce spätnú väzbu.

Väčšina kmitavých systémov, u ktorých sa vyskytujú neželané reziduálne kmity sa dá popísať pomocou prenosovej funkcie:

\[
F(s) = \frac{K \omega_0^2}{s^2 + 2b \omega_0 s + \omega_0^2} \tag{2.1}
\]

K je zosilnenie systému, \(\omega_0\) je vlastná frekvencia systému a \(b\) je tlmenie tohto systému. Je zrejmé, že výrazné reziduálne kmity budú vykazovať systémy s veľmi nízkymi hodnotami tlmenia, a to menšími ako asi 0,2, pričom veľa kmitavých systémov máva tlmenie výrazne menšie ako 0,1. V technickej praxi sa toto tlmenie často dokonca úplne zanedbáva.

2.1 Zvýšenie tlmenia dominantnej pólovej dvojice

Zatímco reziduálnych kmitov možno dosiahnuť zvýšením tlmenia dominantnej pólovej dvojice. Prirodzena sa najprv ponúka mechanický spôsob, ktorý ale nie je jednoduché realizovať. Zavedením vhodnej spätnej väzby s deriváciou a zosilnením \(K_d\) podľa Obr. 2.1 však je možné podľa potreby upraviť tlmenie uzavretého regulačného obvodu. S meniacim sa \(K_d\) sa poloha pólov mení podľa Obr. 2.2.

![Derivačná spätná väzba](image1)

Obr. 2.1 Derivačná spätná väzba

![Pohyb pólov pri zmene zosilnenia v spätnej väzbe](image2)

Obr. 2.2 Pohyb pólov pri zmene zosilnenia v spätnej väzbe
Nevýhodou je, že v prípade viacerých kmitavých pôlových dvojíc sa s rastúcim zosilnením Kd každá druhá dvojica tlačí doprava, čím v prípade dostatočne veľkého Kd spôsobí nestabilitu systému.

2.2 Spektrálna úprava vstupného signálu
Amplitúda vybudených kmitov závisí od amplitúdy spektra budiaceho signálu na vlastnej frekvencii systému. V prípade, že je amplitúda spektra budiaceho signálu na vlastnej frekvencii nulová, nepríde k vybudeniu kmitov vóbec [AAA].

Dopredné metódy tlmenia kmitov využívajú práve túto skutočnosť. Úprava spektra vstupného signálu sa dosahuje buď priamo generovaním signálu s dopredu určeným spektrom (tzw. off-line tvarovanie) alebo vkladaním vhodných filtrov pred riadený kmitavý systém, pričom vhodnejšími sú filtre s konečnou impulznou odozvou (on-line tvarovanie).

2.3 On-line tvarovanie
Principiálna schéma on-line tvarovania je na Obr. 2.3.

Obr. 2.3 Zapojenie on-line tvarovača riadiaceho signálu

FIR filtre používané na úpravu riadiaceho signálu za účelom tlmenia reziduálnych kmitov zvykneme nazývať tvarovače riadiaceho signálu.

Ich podstatou je to, že riadiaci signál rozložia na niekoľko časovo posunutých zložiek, ktoré jednotlivo súce vybudia čiastkové kmity, avšak v súčte sa tieto kmity vzhľadom na vhodne nastavené fázové posuny a amplitúdy utlmiu.

Amplitúdu jednotlivých zložiek označíme A_i a príslušné časové posunutie t_i.

Pre zabezpečenie tlmenia kmitov je treba splniť fázovú podmienku:

$$\sum_{i=1}^{N} A_i e^{-j2\pi i} = 0 \quad (2.2)$$

pričom pre zabezpečenie jednotkového zosilnenia tvarovača treba dodržať amplitúdovú podmienku

$$\sum_{i=1}^{N} A_i = 1 \quad (2.3)$$

Hľadaním vhodných amplitúd impulzov A_i a ich oneskorení t_i zistíme, že ich je nekonečný počet, a to pre každé prirodzené číslo N. Pre jednoduchosť je však vhodné voliť malé čísla N a čo najkratšie časy impulzov t_i, resp. oneskorenie posledného impulzu (t_N).
2.4 ZV tvarovač (Zero Vibration Shaper)

Jedná sa o najjednoduššiu tvarovač založený na nulovaní spektra na vlastnej frekvencii systému v súlade s (4.21). Má len 2 impulzy a je pomerne rýchly, avšak súčasne je aj citlivý na nepresne určené parametre systému. To je dané vysokou strmostou jeho frekvenčnej charakteristiky v okolí vlastnej frekvencie.

Pre nulové tlmenie získavame konštanty:

\[
\begin{align*}
A_1 &= 0,5 \quad \text{v časoch} \quad t_1=0 \\
A_2 &= 0,5 \quad t_2=0,5 T_0 = \pi/\omega_0
\end{align*}
\]

(2.4)

\(T_0\) je v tomto prípade perioeda vlastných kmitov. Rozloženie impulzov je zrejmé z Obr. 2.4.

![Obr. 2.4 Rozloženie impulzov 2 impulzového ZV tvarovača](image)

Z rozlozenia impulzov je zrejmé, že vstupný signál sa rozloží na 2, navzájom o pol periódy posunuté, zložky. Prvá zložka vybudí určitú odozvu, kým druhá zložka vybudí takú istú odozvu s tým rozdielom, že bude v protifáze k prvej. Tým pride k eliminácii celkovej odozvy.

Treba spomenúť, časovo posunuté zložky signálu vnášajú do systému oneskorenie, ktoré môže byť neželané.

3 Meranie akcelerometrom na bremene

Na prvý pohľad sa priamo núka využitie akcelerometra na meranie výchylky bremena, kedže ide v podstate o sklon bremena, resp. lana, na ktorom je upevnené. To je súčasne možné, ale len v statickom režime, kedy je bremeno v pokoji a pôsobí naň len gravitačná síla. V momente, kedy sa dá do pohybu, funguje ako kyvadlo a treba brať do úvahy aj jeho harmonický pohyb.

3.1 Meranie výchylky - statický režim

Meranie výchylky pomocou akcelerometra v statickom režime je to isté ako meranie sklonu telesa na šikmej rovine. Gravitačné zrýchlenie sa rozloží (Obr. 3.1) na zložku v tangenciálnom a radiálnom smere:

\[
a_{gt} = g \sin(\theta)
\]

(3.1)

\[
a_{gr} = g \cos(\theta)
\]

(3.2)
3.2 Dynamický režim

Na Obr. 3.2 sú zobrazené jednotlivé zložky zrýchlení, ktoré sníma akcelerometer umiestnený na bremene. Pri ďalšom odvodení budeme bráť do úvahy len malé výchylky lana.

Bremeno na lane je v tomto prípade považované za ideálne matematické kyvadlo.

Najvhodnejšie je uvažovať v takom súradnicovom systéme bremena, že v jednom smere budeme používať zrýchlenie tangenciálne a v druhom smere zrýchlenie radiálne (v smere odstredivej sily). Obidve sú na seba kolmé.

V radiálnom smere je možné pomocou akcelerometra zmerať zrýchlenie \(a_{r}(t)\) a v tangenciálnom smere \(a_{t}(t)\):

\[
a_{r}(t) = a_{gr}(t) + a_{c}(t) + a_{ext,r}(t) + z_{r}(t) \quad (3.3)
\]
\[
a_{t}(t) = a_{gt}(t) + a_{pt}(t) + a_{ext,t}(t) + z_{t}(t) \quad (3.4)
\]

kde \(a_{gr}(t)\) a \(a_{gt}(t)\) vyjadrujú príslušné prímesy gravitačného zrýchlenia, \(a_{c}(t)\) odstredivé zrýchlenie, \(a_{pt}(t)\) tangenciálne zrýchlenie dané harmonickým pohybom bremena, \(a_{ext,t}(t)\) a \(a_{ext,r}(t)\) zrýchlenie vyvolané vonkajším pôsobením (pohon, poruchy) a \(z_{r}(t)\) a \(z_{t}(t)\) predstavujú šum.

Po dosadení získame nasedovný tvar:

\[
a_{r}(t) = g\cos[\theta_{0}\cos(\omega_{0}t)] + \theta_{0}^{2}g\sin^{2}(\omega_{0}t) + a_{ext,r}(t) + z_{r}(t) \quad (3.5)
\]
\[
a_{t}(t) = g\sin[\theta_{0}\cos(\omega_{0}t)] - g\theta_{0}\cos(\omega_{0}t) + a_{ext,t}(t) + z_{t}(t) \quad (3.6)
\]
Pre malé výchylky je tangenciálne zrýchlenie veľmi malé, prakticky nemerateľné. Je to dané tým, že zrýchlenie tvorené kyvadlovým pohybom telesa v tangenciálnom smere prakticky kompenzuje gravitačné zrýchlenie. Je to obdoba voľného pádu, kedy teleso padá so zrýchlením, ktoré je rovné gravitačnému a akcelerometer nameria nulu. Z matematického pohľadu v tangenciálnom smere vystupuje rozdiel funkcie sínus a jej argumentu. Pre malé výchylky sú hodnoty približne rovnaké, a preto je celková nameraná hodnota blízka nule. Odstredivá zložka je priamo úmerná druhej mocnine amplitúdy výchylky \(\theta_0^2 \), pričom nezávisí od dĺžky lana a kmitá s uhlovou frekvenciou \(2\omega_0 \).

Obr. 3.3 zobrazuje závislosť amplitúdy zrýchlení (bez statickej zložky) meraných na kyvadle v závislosti od amplitúdy výchylky. Je vidiet, že okolo desiatich stupňov výchylky je amplitúda v tangenciálnom smere rádovo v tisícinách g, čo je už takmer na typickej úrovni šumu akcelerometrov. Amplitúdy radiálneho zrýchlenia sú oveľa vyššie – rádovo stotiny g.

Vyhodnocovanie zrýchlenia v tangenciálnom smere teda nie je vhodné na určenia výchylky lana v dynamickom režime. V radiálnom smere má signál vyššie hodnoty, avšak na základe druhej mociinie harmonickej funkcie vystupujúcej vo vzťahu (3.5) sa dá ukázať, že kmitá s frekvenciou \(2\omega_0 \). Z toho vyplýva, že sa stráca informácia o znamienku a ani samostatný signál zrýchlenia meraného v smere lana nie je vhodný na určenie okamžitej výchylky lana.

Napriek tomu sa takýto signál dá využiť na zísťovanie vlastnej frekvencie kmitania a následne adaptívne nastavenie tvarovača vstupného signálu.
Adaptívne nastavovanie tvarovača

Počas prevádzky žeriava sa často mení aj dĺžka lana, ktorý má vplyv aj na vlastnú frekvenciu kmitov podľa vzťahu:

\[
\omega_0 = \sqrt{\frac{g}{l}}
\]

(4.1)

Daná závislosť je zobrazená graficky na Obr. 4.1. V prípade použitia štandardného tvarovača s pevne nastavenou frekvenciou znamená zmena vlastnej frekvencie systému nevhodne nastavené oneskorenie tvarovača a tým pádom zhoršenú redukciu reziduálnych kmitov.

Obr. 4.1 Závislosť vlastnej frekvencie kmitania bremena pri zmene dĺžky lana
Preto sme sa rozhodli tvarovač nastavovať dynamicky. Na Obr. 4.2 je zobrazená bloková schéma tvarovača s identifikáciou vlastnej frekvencie ω_0.

Oneskorenia impulzov tvarovača upravujúceho riadiací signál pre kmitavý systém nie sú v tomto prípade pevne dané ale sú nastavené podľa pôvodne určenej vlastnej frekvencie. V prípade zistenej zmeny vlastnej frekvencie sa táto použije na nové nastavenie tvarovača. Samotnú identifikáciu frekvencie je možné robiť sledovaním vhodnej dodatočnej informácie, napr. konkrétneho parametra, od ktorého priamo ω_0 závisí (napríklad dĺžka lana), alebo frekvenčnou analýzou samotnej odozvy.

Využitie kmitavého priebehu odozvy so sebou prináša protichodné požiadavky. Na jednej strane je cieľom riadenia zabezpečiť čo najmenšiu kmitavú odozvu. Na druhej strane je na určenie vlastnej frekvencie potrebná určitá minimálna amplitúda kmitavej zložky. Stačí si však uvedomiť, že ak je vlastná frekvenčná správne určená, netreba ju prestavovať a kmitavá odozva je nulová. Ak sa však systém rozladi, odozva už nie je nulová a využije sa na nové nastavenie tvarovača.

To si samozrejme vyžaduje použitie snímačov, čim sa stráca vhodnosť predurčených metod. Preto je vhodné zvážiť, či nie je lepšie použiť dané snímače radšie pre spätnoväzobné riadenie.

Nevýhodou tohto prístupu je, že pri zmene nastavenia tvarovača sa skokovo zmení oneskorenie jednotlivých impulzov. To znamená preskočenie alebo opätovné použitie niektorých vzoriek. Následkom je možnosť vzniku nezhody medzi plochou vstupného a tvarovaného signálu.

![Obr. 4.2 Princíp adaptibilného nastavovania tvarovača](image)

5 Riadenie

Pre riadenie sme využili zvýšenie tlmenia dominantnej pólovej dvojice pomocou derivačnej spätnej väzby. Deriváciu výchylky meriame získavame prirodzene pomocou gyroskopov. Zovšeobecnena schéma riadenia pre jednu os je na Obr. 5.1.

V oboch vodorovných osiach je použité rovnaké riadenie. Motor s jeho rýchlostným riadením je tu vyznačený všeobecné pomocou svoých prenosových funkcí. V našom prípade bol využitý krokový motor v otvorenej slučke a riadenie rýchlosti bolo realizované v otvorenej slučke vhodným časovaním krokov.

Na pohyb mačky reaguje bremeno žeriava cez svoju prenosovú funkciu, pričom na výstupe zodpovedajúceho bloku je uhol výchylky. Uhlovej výchylke je (pri malých výchylkách) priamo úmerná dĺžková výchylka ovplyvňujúca celkovú polohu bremena.
Obr. 5.1 Schéma riadenia žeriava s derivačnou spätnou väzbou u v s využitím gyroskopov

Vzhľadom na ľubovoľnú orientáciu bremena na meranú zmenu výchylky vplyvá merania aj v ďalších dvoch osiach, je potrebné brať do úvahy zodpovedajúce priemety do iných osí a spätnú transformáciu do nami využívané osi.

Pre zatlmenie kmitov sa zmeraná zmena výchylky prenásobí koeficientom daným súčtom \(L_0K_d \), kde \(L_0 \) reprezentuje uvažovanú dĺžku lana a \(K_d \) zosilnenie derivačnej spätnej väzby. Zisk \(K_d \) sme zvolili 0,7, čo je hodnota zodpovedajúca dostatočnému zatlmeniu kmitov. \(L_0 \) by mala zodpovedať skutočnej dĺžke lana. Vtedy by sa kompenzovala s dĺžkou lana \(L \) vystupujúcou v prenosovej funkcii kmitového systému.

V našom prípade sa môže \(L \) meniť a nevhodne určený koeficient \(L_0 \) má potom vplyv aj na celkové dosahované tlmenie. Preto je potrebné jeho volbu venovať dostatočnú pozornosť. V prípade malých zmien \(L \) je vhodné nastaviť \(L_0 \) tak, aby výsledné tlmenie bolo v intervale asi 0,5 až 0,7.

V prípade prísnejších požiadaviek na výsledné tlmenie alebo veľkého rozsahu zmien dĺžky lana by bolo potrebné nahradíť konštantu \(L_0 \) premennou hodnotou získanou meraním skutočnej dĺžky lana alebo by bolo možné použiť identifikáciu nepriamo cez identifikáciu vlastnej frekvencie kmitov.

6 Určenie základnej orientácie voči súradnicovému systému základne

Pre spätnú väzbu využívame signál z gyroskopov v smere vodorovných osí žeriava. Bolo by však veľmi nepraktické vyžadovať od obsluhy žeriava presné umiestnenie a orientáciu snímača na bremeno vzhľadom na konštrukciu žeriava.

Preto sme sa zaobrali algoritmami ako určit orientáciu snímača v ľubovoľnej konfigurácii voči základní žeriava a následne tuto orientáciu využívať počas určovania orientácie samotného bremena.
Na to treba vykonať nasledovné kroky:

2. Určiť sklony jednotlivých osí a zmerať sklon voči vertikále definovanou orientáciou vektora zemskej tiaže.
3. Zabezpečiť dodatočnú podmienku pre určenie orientácie v rámci horizontálnej roviny.
4. Určiť orientáciu v rámci horizontálnej roviny.
5. Tým sa určí celková orientácia snímača voči súradnému systému žeriava. V prípade využitia rotačných matíc môže byť celková orientácia snímača na bremene voči žeriavu určená jednou maticou \(R_{sb} \).
6. Počas prevádzky využiť zmeranú orientáciu snímača na výpočet orientácie, resp. rotácie bremena na účely riadenia. Do riadenia bude teda vstupovať súčin matice \(R_{sb} \) a zmeraného vektora (zrýchlenia, rotácií a pod.) v orientácii snímača.

6.1 Určenie sklonu a klopenia pomocou akcelerometra

Pre určenie orientácie snímača voči vektoru zemskej tiaže budeme predpokladať, že os z bremena bude prechádzať jeho ťažiskom a v ustálenom stave bude totožná so zvislým smerom (a tým aj s osou z základne). V takom prípade bude gravitačné zrýchlenie pôsobiť v osi z bremena. V jednotlivých osiach snímača sa budú merať priemety gravitačného zrýchlenia. Z nich je možné určiť orientáciu snímača v priestore, čo si ukážeme v nasledujúcom texte.

![Obr. 6.1 Osi a uhly pri meraní sklonu](image)

Vektorový súčet jednotlivých zložiek v statickom stave tvorí práve gravitačné zrýchlenie, a preto po aplikovaní Pythagorovej vety a zahrnutí určitej tolerancie môžeme písať:

\[
\sqrt{a_x^2 + a_y^2 + a_z^2} \in ((1 - k); (1 + k))
\]

(6.1)

Meranie sklonu s využitím zrýchlení má zmysel robiť len v prípade splnenia tejto podmienky. Pre úplnosť treba uviesť, že tá môže byť splnená aj v prípade vhodnej kombinácie lineárnych zrýchlení. Kde \(k \) predstavuje pásmo tolerancie, v našom prípade sme použili hodnotu \(k = 0,01 \).
Pre zrovnoobežnenie xy roviny snímača a xy bremena (vodorovná rovina) potrebujeme získať maticu rotácie. Tá bude zahŕňať sklon dvoch osí, a teda dve samostatné rotácie za účelom stotožnenia osí z snímača s osou z bremena. V našom prípade si vyberieme najprv rotáciu vektoru nameraných zrýchlení okolo osi x o uhol ϕ

$$\phi = -\arctan2(a_y, a_z)$$

(6.2)

Následne rotujeme vektor meraní okolo osi y o uhol θ.

$$\theta = \arctan2\left(\frac{a_x}{\sqrt{a_y^2 + a_z^2}}\right)$$

(6.3)

Tieto dve rotácie možno skombinovať do jednej matice, ktorú nazveme matica inklinácie

$$R_{in} = R_x(\phi)R_y(\theta)$$

(6.4)

6.2 Určenie orientácie v horizontálnej rovine pomocou akcelerometra

Pomocou samotného signálu akcelerometra nie je v statickom stave možné určiť orientáciu v rámci horizontálnej roviny.

Toto je možné spraviť s využitím inej polohy bremena. Táto poloha vznikne vychýlením lana v presne určenom smere. Z výpočtového pohľadu je vhodné použiť vychýlenie okolo jednej z osí bremena, resp. pozdĺž niektorého z osí základne, avšak metóda sa dá rozšíriť aj na iný známy uhol k osi x.

Podmienkou je, aby sa v momente merania nepôsobili iné zrýchlenia ako gravitačné (opäť možno použiť vztah (6.1) a aby sa rovina xy bremena líšila od roviny horizontálnej. V nej je priemet zrýchlení v osiach x a y po rotácii pomocou matice R_{in} nulový.

Obr. 6.2 Priemety zrýchlení pri výchylke kyvadla v 3D a priemet do roviny xy

Pri výchylení o uhol α sa gravitačné zrýchlenie prejaví aj v osiach x a y.

$$a_x = gs\sin(\alpha)\cos(\psi)$$

(6.5)
\[a_y = g sin(\alpha) \sin(\psi) \] \hspace{1cm} (6.6)

Z týchto priemetov je potom možné určiť priemetov je potom možné zistiť uhol \(\psi \).

\[\psi = \text{atan2}(a_y, a_x) \] \hspace{1cm} (6.7)

Nevýhodou tejto metódy je, že vo vzťahu vystupuje člen \(\sin(\alpha) \) a ten pri malých výchylkách nadobúda malé hodnoty a následne aj rádovo zmenšuje namerané zrýchlenia \(a_x \) a \(a_y \). Malé hodnoty blízke úrovni šumu, najmä v prípade uhlov blízkych násobku 90° spôsobia signifikantné nepresnosti v meraní.

Okrem toho môže byť komplikované zabezpečiť vyžadovanú polohu pomocou nadradeného riadiaceho systému.

Výslednú rotačnú maticu \(R_{sb} \) získame kombináciou rotácie okolo osi \(z \) a matici inklinácie.

\[R_{sb} = R_z(\psi)R_{in} \] \hspace{1cm} (6.8)

6.3 Určenie orientácie v horizontálnej rovine pomocou gyroskopu alebo magnetometra

Vhodnejšou a ľahšej realizovateľnou alternatívou sa javí využitie signálu z gyroskopu a kmitanie brementa v presne definovanom smere, pričom sa využije výpočet rovnaký ako v prípade akcelerometra. Túto alternatívu sme nakoniec implementovali.

Ďalšou možnosťou je využitie magnetometra a magnetického poľa Zeme. Orientácia v horizontálnej rovine je teda daná azimutom, pričom treba brať do úvahy aj orientáciu základne žeriava voči magnetickému poľu Zeme.

7 Použitý hardvér

Pre overenie teoretických predpokladov a navrhnutého riadenia bol vytvorený reálny systém pozostávajúci z mechanickej časti reprezentujúcej mechaniku žeriava, snímacej dosky uchytenej na bremente a riadiacej elektroniky ovládajúcej žeriav.

7.1 Mechanika

Pre praktické merania bol použitý model žeriava založený na mechanike komerčnej frézy CauCau Kompas H-1000, z ktorej bolo odmontované vreteno. Namiesto neho bolo zavesené bremeno so snímacou jednotkou. Druhou podstatnou zmenou bolo odobratie podložky, aby sme mali voľný priestor pre bremeno a jeho záves.
Žeriav pracuje v kartézskom súradnicovom systéme a zdrojom pohybu v smeroch jednotlivých osí sú krokové motory napájané z CNC kontroléra dodaného spolu s frézou. Pôvodné riadenie z počítača (cez paralelný port) bolo nahradené vlastnou riadiacou jednotkou.

Bremeno je tvorené podlhovastou batériou o hmotnosti 140 g orientovanou vodorovne. Zavesená bola za rohy štyrmi lankami, čím sa obmedzilo skrúcanie okolo vertikálnej osi v porovnaní s jedným lankom a zároveň sa zamedzilo vzniku viacerých kmitavých módov. Snímač je na batériu pripojený zvrchu prostredníctvom gumičiek. Batéria zároveň slúži na napájanie snímača.
7.2 Hardvér snímačovej jednotky
Za účelom zistenia stavových veličín bremena a ich spracovanie sme zhotovili dosku obsahujúcu príslušné MEMS snímače (akcelerometer, gyroskopy, magnetometer). Pri jej návrhu boli brané do úvahy faktory ako univerzalnosť, dostatočný výpočtový výkon, nízka spotreba a možnosť širokého rozsahu napájacieho napätia.

Bloková schéma dosky je na Obr. 7.3. Jadrom je mikrokontrolér STM32F103C8T6, zabezpečujúci zber dát zo snímačov, ich spracovanie a odoslanie do riadiacej elektroniky prostredníctvom modulu XBee.

![Bloková schéma inerciálnej jednotky](image.png)

Jednotlivé snímače sú umiestnené na samostatnej doske, čo umožňuje vymeniteľnosť snímačov v prípade potreby a zvyšuje jej univerzalnosť. V našom prípade boli použité akcelerometer SCA3100 a gyroskopy CRM100 a CRM200 využívajúce SPI a magnetometer HMC5883 využívajúce I2C zbernicu.

![Inerciálna jednotka pre uchytanie na bremeno](image.png)

7.3 Hardvér riadiacej jednotky
Pre ovládanie pohybu modelu žeriava, implementáciu riadiacich algoritmov, zber dát z bezdrôtovej snímačej dosky bola pripravená riadiaca jednotka.

Obr. 7.5 Bloková schéma prepojenia riadiacej jednotky

Riadiaca jednotka využíva dáta zo snímačovej jednotky. Tie získava prostredníctvom bezdrôtovej komunikácie, ktorú zabezpečuje modul XBee-BWIT-004. Pre komunikáciu s počítačom sa používa sériová linka.

8 Merania a dosiahnuté výsledky

Na uvedenom hardvéri bola vykonaná séria pokusov, ktoré mali za cieľ zistiť správanie sa bremena a preveriť vybrané metódy riadenia.

Pre korektnosť uvedieme, že pri meraní bola vo väčšine prípadov doska so snímačmi umiestnená tak, že rovina xy bola vodorovne a jej os y je orientovaná v smere osi x žeriava. Výhodou je, že v spätnovázobnom riadení beme rotáciu okolo osi y pre riadenie pohybu v smere y, obdobne to platí s osou x. Rozdiel je potom v znamienkach. V meraniach však budeme vyhodnocovať najmä pomery meraných veličín a amplitúdy kmitov.

Merané boli zrýchlenia pomocou akcelerometra, rýchlosti rotácie pomocou gyroskopu a magnetická indukcia pomocou magnétema. Vzhľadom na nízky rozsah rýchlostí žeriava boli dosahované aj relatívne malé výchylky. Tie sme nemali fyzicky čím merať, avšak pre orientáciu sa dá z amplitúdy rotácie určiť aj príslušná amplitúda výchylky využitím vzťahu

\[\dot{\theta} = \omega_0 \theta_0 \]

(8.1)
8.1 Voľné kyvadlo bez riadenia

Pre úvodnú analýzu sme bremeno vychýlili okolo osi x snímača asi o 2,5 °. Bremeno sme nechali v pokoji kmitať. Obr. 8.1 zobrazuje zrýchlenia príslušné zo začiatku záznamu.

Na grafe si možno všimnúť, že sa nepodarilo dodržať presnú vodorovnú polohu. To je vidieť v osiach x a y, ktoré sú nenulové. Zrýchlenie v osi z nadobúda hodnotu asi 0,99 g, čo zodpovedá reálnemu 1 g. Tento rozdiel svedčí o určitej chybe zosilnenia akcelerometra. Obr. 8.1 zobrazuje zrýchlenia príslušné zo začiatku záznamu detailnejšie. Signál je zašumený a nie je na ňom vidieť náznak periodicity. Z toho dôvodu sa pri ďalších pokusoch zrýchleniu venovať nebudem.

V prípade gyroskopu nás bude zaujímať záznam po 1400 s, ktorý je v detaile vykreslený na Obr. 8.2. Okolo osi x je ešte stále zreteľný, aj keď už zašumený harmonický signál s amplitúdou asi 0,4 °, zodpovedajúci amplitúde výchylky 0,1 ° v našom prípade. Čiže vlastnú frekvenciu je možné určiť už pri takej malej výchylke.

Zaujímavostou je posledných asi 10 s záznamu, kedy sa bremeno začalo stáť okolo osi y. Tento čas zodpovedá vstupu do miestnosti pred vypnutím merania, čiže bremeno je citlivé už na malé pohyby vzduchu v miestnosti. V reálnom nasadení nepredpokladáme až takú citlivosť, avšak na druhej strane možno predpokladať intenzívnejšie poruchy (napr. vietor, drgnutie do bremena zvonka).

Záznam z magnetometra zo začiatku merania je na Obr. 8.3. Pri vyšších výchylkách je poznať harmonický charakter a z merania je možné určiť sklon voči vektoru magnetickej indukcie Zeme. Pri ešte menších výchylkách (pod 1 °) sa však užitočný signál už stratí v šume. Z tohto pohľadu je možné magnetometer zaradiť niekde medzi akcelerometer a gyroskop.

![Obr. 8.1 Detail priebehu zrýchlenia pri výchylke 2,5 °](image-url)
Nakoľko sa signál z gyroskopu ukázal ako najpoužiteľnejší pri malých výchylkách, budeme sa v ďalšom texte zaoberať najmä ním.

Obr. 8.2 Detail signálu z gyroskopu na konci merania

Obr. 8.3 Detail priebehu magnetickej indukcie pri výchylke 2,5 °
8.2 Polohovanie bez riadenia

Pri priamom polohovaní bremena pomocou pákového ovládača vznikajú reziduálne kmity. To dobre ilustruje Obr. 8.4. V spodnom grafie je zobrazený priebeh polohy mačky pri náhodnom manuálnom polohovaní. Príslušné vypuštene kmity sa prejavili vo všetkých troch osiach žeriava. Po zastavení polohovania je amplitúda rotácie okolo osi x asi 3 °/s a okolo osi y asi 1 °/s. To zodpovedá amplitúde výchylky asi 0,8 °, pričom toto kmitanie slabne len veľmi pomaly, ide rádovo o minúty. To bolo vlastne ukázané v prípade bez riadenia (kapitola 8.1).

Obr. 8.4 Priebeh signálu gyroskopu pri polohovaní bremena

8.3 Polohovanie s riadením s deriváčnou spätnou väzbou

V prípade riadenia pomocou deriváčnej spätnej vázby sme získali signál na Obr. 8.5, pričom priebeh vstupnej rýchlosti z pákového ovládača ako aj priebeh polohy mačky je zobrazený na Obr. 8.6. Je vidieť, že ku kmitom s najväčšou intenziou prichádza počas samotného polohovania v intervale medzi 2 s a 5 s. Intenzita je však do 0,5 °/s a teda rádovo nižšia ako v prípade bez riadenia. Do času asi 13 s prebieha automatické riadenie. Po poklesе pod 0,15 °/s (zodpovedá výchylke 0,04 °) už kmity považujeme za dostatočne malé a riadenie sa deaktivuje.
Obr. 8.5 Signál z gyroskopu pri polohovaní so spätnovzťobným riadením

Obr. 8.6 Priebeh želanej rýchlosti z pákového ovládača a polohy s riadením s využitím gyroskopu
8.4 Polohovanie so ZV tvarovačom

V ďalšom sa budeme venovať dopredným metódam, konkrétne použijeme ZV tvarovač. V prípade bez tvarovača získame signál na Obr. 8.7. Je vidieť, že začiatok pohybu mačky vybudí kmity asi 1 °/s, pričom po zastavení mačky sa kmity zdvojnásobia.

Na Obr. 8.8 je podobný prípad polohovania, avšak bol použitý ZV tvarovač. Tu je vidieť vybudenie kmitu pri zmene stavu mačky a teda v čase 5 s a 7 s. Tieto kmity sú však následne utlmené o pol periódy vlastných kmitov neskôr. V prípade okolo osi x je eliminácia prakticky úplná. V prípade okolo osi y ostáva kyvadlo kmitať. Kmity s porovnatelnou intenzitou však boli v systéme aj pred polohovaním. Pripomeňme, že ZV tvarovač nie je z princípu schopný tieto kmity odstrániť, nakolko odstraňuje len kmity vznikajúce od riadenia. Tieto kmity však možno využiť pre identifikáciu vlastnej frekvencie.

Obr. 8.7 Zmena polohy po rampe a kmitová odozva
8.5 Polohovanie s riadením s natočeným snímačom so identifikovanou orientáciou bremena

Riadenie na princípe derivačnej spätnej väzby sme otestovali aj spolu so zistením orientácie súradných osí. Pre toto meranie sme vybrali orientáciu, kedy je význam osí poprehadzovaný a zároveň žiadna nie je zvislá. Pre identifikáciu sme postupovali podľa metód opísaných v kapitole 17 a 19, čiže zistili sme sklon pomocou akcelerométra a tretie natočení pomocou rozkývaná v známom smere.

Priamy signál z gyroskopu sa transformuje pomocou rotačných matíc do orientácie opísanej na začiatku tejto kapitoly. Po transformácií získavame signál zobrazený na Obr. 8.9. Aj v tomto prípade sa darí dosiahnuť amplitúdu kmitov výrazne pod 0,5 °/s a to aj počas polohovania samotného. V tomto prípade sme nastavili vypnutie riadenia na úroveň 0,25 °/s. Práve z tohto dôvodu je v čase asi 11 s na chvíľu poloha y mačky konštantná – riadenie je deaktivované z dôvodu nízkej amplitúdy kmitov.

Na rotácii okolo osí x sú vidieť kmity s vyššou frekvenciou namodulované na kmity očakávané. Je evidentné, že sú budene priamo pohybo mačky a po jej zastavení zmiznú. Tieto kmity sú pravdepodobne dané ďalším rezonančným módom spôsobeným nevhodným voľným uchýtením snímača v upravenej orientácii. Je však vidieť, že aj v tomto prípade sa podarilo kmity znížiť na akceptovateľnú úroveň.

Obr. 8.8 Signál z gyroskopov pri použití ZV tvarovača
Obr. 8.9 Signál z gyroskopov po transformácii
9 Poznámky o praktickej realizovateľnosti.

9.1 Tvorba riadenej signálu

Po technickej stránke najjednoduchším riadením žeriava zabezpečujúcim obmedzenie reziduálnych kmitov je on-line tvarovanie riadenej signálu pomocou tvarovačov. Jednoduchou softvérovou úpravou je možné docieľiť takmer úplnú elimináciu kmitov vybudovaných pohonmi na jednej vlastnej frekvencii, ako aj na viacerých vlastných frekvenciách.

Principiálnym nedostatkom je však to, že sa jedná o dopredné riadenie, a teda nie je zavedená spätná väzba. Toto riadenie teda nemá žiadny vplyv na kmity vybudované externými vplyvmi ako je vietor, alebo manuálne vychýlenie bremena.

Iným prístupom je priebežná identifikácia vlastnej frekvencie. To môže byť realizované meraním dĺžky lana pri odmotávaní a namotávaní, čo môže byť nepraktické. Na druhej strane dĺžka lana nemusí presne odzrkadľovať polohu tažiska a vlastná frekvencia tým pádom nemusí byť určená presne.

Alternatívou je nami navrhnuté použitie MEMS akcelerometrov alebo gyroskopov uchytených na bremene. Pri kmitaní sa v ich výstupnom signáli objaví frekvenčná zložka zodpovedajúca vlastnej frekvencii kmitov (alebo jej dvojnásobku).

Nedostatkom tohto prístupu je, že pri prudkých zmenách v riadení prípadne pri pôsobení externých vplyvov môže byť vybudované impulzy, ktoré majú za následok, že zmeraný signál nebude mať harmonický charakter daný len reziduálnymi kmitmi. Toto treba zobrať do úvahy a adaptáciu tvarovača na riadiacu frekvenciu robiť len v prípade, kedy neprichádza k výraznému vplyvu riadenia na kmity (napr. keď je ustálený vstupný signál od operátora). Prípadne je možné nastaviť časové intervály, keď sa nepredpokladajú výrazné externé vplyvy. To už je však ťažšie realizovateľné a pomáha odlišovať výsledok od zmeny vlastnej frekvencie kmity a určovať vlastnú frekvenciu tým pádom nemusí byť určená presne.

Alternatívou je nami navrhnuté použitie MEMS akcelerometrov alebo gyroskopov uchytených na bremene. Pri kmitaní sa v ich výstupnom signáli objaví frekvenčná zložka zodpovedajúca vlastnej frekvencii kmitov (alebo jej dvojnásobku).

Nedostatkom tohto prístupu je, že pri prudkých zmenách v riadení prípadne pri pôsobení externých vplyvov môže byť vybudované impulzy, ktoré majú za následok, že zmeraný signál nebude mať harmonický charakter daný len reziduálnymi kmitmi. Toto treba zobrať do úvahy a adaptáciu tvarovača na riadiacu frekvenciu robiť len v prípade, kedy neprichádza k výraznému vplyvu riadenia na kmity (napr. keď je ustálený vstupný signál od operátora). Prípadne je možné nastaviť časové intervály, keď sa nepredpokladajú výrazné externé vplyvy. To už je však ťažšie realizovateľné a pomáha odlišovať výsledok od zmeny vlastnej frekvencie kmity a určovať vlastnú frekvenciu tým pádom nemusí byť určená presne.

Alternatívou je nami navrhnuté použitie MEMS akcelerometrov alebo gyroskopov uchytených na bremene. Pri kmitaní sa v ich výstupnom signáli objaví frekvenčná zložka zodpovedajúca vlastnej frekvencii kmitov (alebo jej dvojnásobku).

Nedostatkom tohto prístupu je, že pri prudkých zmenách v riadení prípadne pri pôsobení externých vplyvov môže byť vybudované impulzy, ktoré majú za následok, že zmeraný signál nebude mať harmonický charakter daný len reziduálnymi kmitmi. Toto treba zobrať do úvahy a adaptáciu tvarovača na riadiacu frekvenciu robiť len v prípade, kedy neprichádza k výraznému vplyvu riadenia na kmity (napr. keď je ustálený vstupný signál od operátora). Prípadne je možné nastaviť časové intervály, keď sa nepredpokladajú výrazné externé vplyvy. To už je však ťažšie realizovateľné a pomáha odlišovať výsledok od zmeny vlastnej frekvencie kmity a určovať vlastnú frekvenciu tým pádom nemusí byť určená presne.

Alternatívou je nami navrhnuté použitie MEMS akcelerometrov alebo gyroskopov uchytených na bremene. Pri kmitaní sa v ich výstupnom signáli objaví frekvenčná zložka zodpovedajúca vlastnej frekvencii kmitov (alebo jej dvojnásobku).

Nedostatkom tohto prístupu je, že pri prudkých zmenách v riadení prípadne pri pôsobení externých vplyvov môže byť vybudované impulzy, ktoré majú za následok, že zmeraný signál nebude mať harmonický charakter daný len reziduálnymi kmitmi. Toto treba zobrať do úvahy a adaptáciu tvarovača na riadiacu frekvenciu robiť len v prípade, kedy neprichádza k výraznému vplyvu riadenia na kmity (napr. keď je ustálený vstupný signál od operátora). Prípadne je možné nastaviť časové intervály, keď sa nepredpokladajú výrazné externé vplyvy. To už je však ťažšie realizovateľné a pomáha odlišovať výsledok od zmeny vlastnej frekvencie kmity a určovať vlastnú frekvenciu tým pádom nemusí byť určená presne.
9.2 Riadenie s derivačnou spätnou väzbou

V prípade riadenia so spätnou väzbou je možné zatličiť aj kmity buddené vonkajšími vplyvami. Ukázalo sa, že je to možné len do určitej miery, nakoľko pri vyšších výchylkách použité pohony nezvládali vykonať dostatočný akčný zásah. To je ostatné ale záležitosťou vhodnej voľby pohonu.

Na druhej strane možno konštatovať, že toto riadenie je vždy schopné utlmiť kmity, ktoré boli vybudené počas pohybu vlastnými pohonmi.

Jednou z nevýhod je, že toto riadenie nie je vhodné vtedy, keď systém kmitá na viacerých frekvenciách. Tlmenie jedného kmitavého módu síce zvýši, avšak póly zodpovedajúce druhému módu majú tendenciu sa tlačiť do nestabilnej oblasti, a teda systém sa od istého zisku spätnej väzby stáva nestabilným.

Možným riešením je umiestnenie snímačnej jednotky na časti lana, resp. háku, kde neprichádza k prejaveniu sa druhého módu. Čiže v principe by sa tlmili kmity hornej časti závesu, avšak dolná časť s bremenom by nebola braná do úvahy a kmitala by na svojej vlastnej frekvencii. Záležíť už na konkrétnej aplikácii, či sú tieto kmity prípustné. Predpokladáme touto vo váčšine prípadoch malé dlžkové výchylky.

Problém sa ešte zhorší, ak ku skrúcaniu príde počas identifikácie orientácie snímača. To má za následok chybu počas celej doby používania takto zle nastavenej snímačnej jednotky.

Potenciálne riešením je použitie magnetometra na priebežné určenie natočenia voči zemskejmu magnetickému poľu a nasledovnú korekciu zmeraných údajov. Možné je použiť aj integráciu signálu gyroskopu okolo osí, keď je treba brať do úvahy drift snímača, a teda je treba priebežný integrovaný uhol korigovať, napr. práve spomínaným magnetometrom.

Nevýhodou magnetometra je zasa to, že snímacia jednotka môže pracovať v prostredí s výskytom magneticky tvrdých materiálov, ako aj ďalších magnetických polí, ktoré môžu byť dokonca premenlivé. Inou možnosťou ako zamedziť skrúcaniu lana je vhodné konštrukčné uchytenie bremena. Záves tvorený viacerými lanami, ktoré nie sú uchytené v jednom bode značne redukuje skrúcanie.

To má ale aj vplyv na geometriu celého závesného systému, kedy už sklon bremena nie je totožný so sklonom lana. V takom prípade sú namerané signály iné ako uvádzané v tejto práci. To platí najmä pre zrychlenia zo vzťahov (3.5) a (3.6), ktoré platia pre ideálny záves. Najvýraznejšie sa to prejaví zreteľným kmitaním aj v tangenciálnej osi pri relatívne malých výchylkách snímačnej jednotky.
Záver

Hlavným cieľom tejto práce bolo analyzovať možnosti použitia MEMS inerciálnych snímačov pri riadení žeriavov.

Začiatok práce tvorí rozbor rôznych matematických modelov žeriavov, ako aj iných vybraných kmitavých systémov, keďže niektoré prístupy k riadeniu sú analogické.

Teoreticky sa venujeme najčastejšie používaným inerciálnym snímačom, ich princípom a praktickými aspektami spojenými s ich použitím.

V ďalšom texte boli preberané rôzne typy riadenia so spätnej väzbou používané na riadenie žeriavov. Spomináme jednoduché PD regulátory, zaobrali sme sa sa možnosťou zvýšenia tlmenia dominantnej pólovej dvojice, no venujeme sa aj stavovej regulácii, optimálnemu a robustnému riadeniu.

Iným podrobne rozobratým prístupom pri riadení spomínaných systémov je dopredné riadenie tvarovačmi, kedy sa snažime upraviť vstupný signál tak, aby neboli schopné vybudúť kmity bremena.

Postupne sme sa dostali k jadru samotnej práce, ktorým je analyza signálov meraných inerciálnymi snímačmi na bremene počas jeho polohovania. Nasleduje časť venovaná možnostiam využitia týchto signálov.

Vypracovali sme dve základné metódy. Obidve sú založené na umiestnení snímacej jednotky tvorenej MEMS inerciálnymi snímačmi na bremeno alebo hák žeriava.

V jednom prípade využívame nameraný signál na identifikáciu vlastnej frekvencie kmitov žeriava, na základe ktoré sa adaptívne nasleduje tvarovač vstupného signálu od operátora žeriava. Ukázalo sa, že na túto aplikáciu sú dostatočne citlivé gyroskopy schopné zmerať použiteľný signál aj pri výchylkách hlboko pod 1 °, kým akcelerometre potrebujú výchylky nad 5 °. Na samotnú identifikáciu vlastnej frekvencie je vhodné používať spracovanie signálov vo frekvenčnej oblasti.

Druhým prípadom je použitie signálu zo snímacej jednotky v spätnej väzbe. Zvolili sme riadenie pomocou zvýšenia tlmenia dominantnej pólovej dvojice s využitím derivačnej spätnej väzby. K tomu sa prirodzene hodí derivácia polohy, ktorú získame pri malých výchylkách z merania uhlovej rýchlosti pomocou gyroskopu.

K overení tohto konceptu sme na pracovisku postavili snímaciu jednotku s inerciálnymi snímačmi a bezdrôtovým prenosom dát do riadiacej jednotky, v ktorej sme implementovali navrhnuté algoritmy. Pri praktických meraniach sa ukázalo, že takéto riadenie je funkčné a reziduálne kmity sa podarilo viac ako rádovu zmeniť.

Ďalšou významnou časťou práce je identifikácia orientácie snímacej jednotky, nakolko je možné predpokladať, že táto jednotka bude umiestňovaná obsluhou, ktorá nebude (musieť) dbať na jej presné umiestnenie. Bolo predstavených niekoľko metód využívajúcich samotné akcelerometre, ale aj akcelerometre v kombinácii s gyroskopom alebo magnetometrom. Pri praktických pokusoch sa ukázalo, že aj pri ľubovoľnej orientácii snímacej jednotky je možné žeriav riadiť, aj keď kvalita riadenia v tomto prípade už bola nižšia. To dávame za vinu nepresnému určeniu orientácie a v našom prípade aj nedokonalým uchytením snímacej jednotky v jeho polohy.
10.1 Prínosy dizertačnej práce

Medzi hlavné prínosy dizertačnej práce možno zaradiť:

- Analýza signálov meraných inerciálnymi snímačmi umiestnenými na bremene žeriava
- Návrh adaptívneho nastavovania tvarovača vstupného signálu
- Syntéza riadenia žeriava s využitím derivačnej spätnej väzby
- Návrh metód pre určenie orientácie snímateľnej jednotky na bremene voči súradnicovému systému žeriava
- Implementácia snímateľnej jednotky s určovaním orientácie a jej použitie pri riadení reálneho modelu žeriava

11 Bibliografia

1 Publikované práce autora

1.1 Autorské osvedčenia, patenty, objavy

1.2 Vedecké práce v zahraničných nekarentovaných časopísoch

1.3 Vedecké práce v domácich nekarentovaných časopísoch

Hubinský, Peter - Palkovič, Lukáš: Predikcia dobehu pri tlmení kmitov portálového žeriava. In: EE časopis pre elektrotechniku a energetiku. - ISSN 1335-2547. - Roč. 15, č. 5 (2009), s. 22-24

Palkovič, Lukáš, Autonomné riadené autíčko pre autodráhu, Posterus portál pre odborné publikovanie, 2009 ISSN 1338-0087

Citované v:

1.4 Vedecké práce v domácich recenzovaných vedeckých zborníkoch, monografiách

1.5 Publikované príspevky na zahraničných vedeckých konferenciách

Citované v:
-MOTORIN, AB, ОА СТЕПАНОВ, and ЛП СТАРОСЕЛЬЦЕВ. "РАЗРАБОТКА АППАРАТНО-ПРОГРАММНОГО КОМПЛЕКСА ДЛЯ ИЗУЧЕНИЯ И ИССЛЕДОВАНИЯ ИНТЕГРИРОВАННЫХ

1.6 Publikované príspevky na domácích vedeckých konferenciách

1.7 Rôzne publikácie a dokumenty, ktoré nemožno zaradiť do žiadnej z predchádzajúcich kategórií

Dni mobilnej robotiky, Duchoň, František -- Babinec, Andrej -- Rodina, Jozef -- Palkovič, Lukáš, Dni mobilnej robotiky. Spektrum : periodikum Slovenskej technickej univerzity v Bratislave Roč.19, č.3. s. 10. ISSN 1336-2593