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Názov
Bihormonálne riadenie glukózy v krvi

Anotácia dizertačnej práce
Dizertačná práca sa zaoberá reguláciou hladiny glukózy v krvi u pacientov
s diabetom typu 1. V práci sú popísané základné fyziologické znaky
diabetu, liečebné postupy a dostupné technológie a je uskutočnená analýza
súčasných riešení. Na základe analýzy je navrhnutý bihormonálny riadiaci
algoritmus využívajúci inzulín a glukagón. Algoritmus využíva model
s ARMAX štruktúrou na popis dynamiky glykémie. Model je možné
identifikovat’ zo základných dát o pacientovi, prípadne jednoduchým exper-
imentom, ak dáta nie sú známe. Štruktúra riadenia sa skladá z Kálmanovho
filtra, prediktívneho regulátora (MPC) pre podávanie inzulínu, MPC
alebo proporcionálno-derivačného regulátora pre podávanie glukagónu a z
kalkulátora bolusového inzulínu. Glukagón predstavuje v uzavretej slučke
iba bezpečnostný prvok. Inzulín je podávaný neagresívne, bez toho, aby
regulátor dopredu uvažoval s možnost’ou podania glukagónu. Inzulín
a glukagón nikdy nie sú podávané súčasne. Prepínanie medzi regulátormi je
riadené bud’ prekročením definovanej úrovne glykémie s hysteréziou alebo
na základe predikcie hypoglykémie. Ďalej je predstavený adaptívny algorit-
mus s parametrami ARMAX modelu priebežne identifikovanými pomocou
rekurzívnej metódy najmenších štvorcov. Výsledky dokazujú, že navrhnutý
bihormonálny algoritmus riadenia poskytuje bezpečnú reguláciu glykémie
a výrazne skracuje čas strávený v hypoglykémii. Algoritmus využíva
glukagón efektívne a je schopný zabránit’ vzniku t’ažkej hypoglykémie aj
pri neočakávanom zvýšení citlivosti na inzulín alebo po podaní nadmerného
množstva bolusového inzulínu.

Title
Dual-hormone Control of Blood Glucose

Abstract
The thesis discusses blood glucose control algorithms, called an artificial
pancreas (AP), for people with type 1 diabetes. The thesis provides
an overview of the basic diabetes physiology, treatment and available
technology and analyzes the current state-of-the-art solutions for the AP.
Based on the analysis, we propose a control algorithm for a dual-hormone
AP incorporating both insulin and glucagon. The algorithm utilizes an
ARMAX model describing the glucose dynamics, which can be identified
from the commonly known patient-specific data, or by conducting a simple
experiment if the data is not available. The control structure includes
a Kalman filter, a model predictive controller (MPC) for insulin infusion,
an MPC or a proportional-derivative controller for glucagon infusion and



a bolus calculator. Glucagon is included as a safety feature in the closed-
loop system, and the insulin dosing is performed non-aggressively without
anticipating future glucagon administration. Insulin and glucagon are never
administered simultaneously. The switch between insulin and glucagon
is based either on a measured glucose level threshold with hysteresis or
a prediction of upcoming hypoglycemia. In addition, an adaptive version
of the algorithm is presented, where the ARMAX model is continuously
identified using a recursive least squares method. The results indicate
that the proposed dual-hormone control algorithm provides a safe glucose
regulation and reduces the time spent in hypoglycemia significantly. The
algorithm uses glucagon efficiently and prevents severe hypoglycemia even
in the cases when the insulin sensitivity increases unexpectedly or the
patient overestimates the mealtime insulin bolus sizes.
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Introduction

The control theory offers numerous potential applications in biological
systems and medical technology. The largest progress has been achieved
in the field of cardiology and endocrinology [1]. One of the currently
most interesting topics among the medical control applications is the blood
glucose regulation in people with type 1 diabetes. International Diabetes
Federation (IDF) already considers diabetes a worldwide epidemic and
expects the number of diabetic patients to reach almost 600 million within
a generation [2]. In several regions, the estimates show an alarming increase
in type 2 diabetes among younger population as well as a rapid increase in
newly onset type 1 diabetes [2]. According to Doyle et al. [1], development
of a partial human pancreas replacement to improve glucose control remains
the greatest challenge for control theory applications in biological systems.

Nowadays, patients with type 1 diabetes often still have to rely on a con-
ventional insulin therapy, which requires their full attention to the glucose
level monitoring, meal regimen and proper insulin dosing throughout the
day and often also at night.

For decades, scientists have been in pursuit of an automated glucose
control system called an artificial pancreas. The continuous insulin infu-
sion systems together with recent development in the continuous glucose
sensors and smart devices opened unprecedented possibilities for building
a fully functional autonomous pancreas replacement. However, the glucose
regulatory system in human body is incredibly complex. Despite a huge
development in the glucose sensing, insulin pumps and control technology,
safety of the artificial pancreas systems remains an issue that is still not fully
resolved [3]. There is a variety of physiological limitations associated to the
current way of insulin administration and glucose sensing. Together with
the technical imperfections including sensor precision and reliability, these
put large requirements on the control algorithm to ensure safe operation.
A functional glucose control system would unburden the patients with
type 1 diabetes from the demanding everyday routine of diabetes self-
management and considerably increase the quality of their lives. Therefore,
development of new control algorithms and their testing is still of extremely
high importance.

The largest challenge in type 1 diabetes treatment is the compensation
of the postprandial glucose peaks without inducing hypoglycemia later on,
when the meal effects diminish and the insulin action prevails. Currently,
even the fastest rapid acting insulin also offers the peak action too late
and the action lasts too long. A possible solution to lower the risks
arising from the mismatch between carbohydrate and insulin dynamics is
to incorporate glucagon, a pancreatic hormone antagonistic to insulin, into
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the control system. Glucagon action is opposite to insulin. It increases
glucose concentration if it drops too low. Control system incorporating
both insulin and glucagon is called a dual-hormone artificial pancreas.
With glucagon available, the dual-hormone artificial pancreas has means
to prevent hypoglycemia automatically, without the need for carbohydrate
intervention by the patient. So far, the major problem associated with
glucagon has been a lack of formulation stable in liquid form. Recently,
several biotechnological companies have announced glucagon formulations
with long-term stability in liquid form.

By combining the desired effects of insulin and glucagon, the dual-
hormone control has a large potential to provide a better compensation of
the blood glucose and improve the safety of artificial pancreas systems. This
has been documented by several in- and out-patient trials [4–6].

The thesis provides an overview of the basic physiological principles
related to type 1 diabetes and investigates the current solutions for the
artificial pancreas including single- (insulin only) and dual-hormone control
strategies. The second part of the thesis presents a dual-hormone control
algorithm based on a linear model identifiable from basic patient-specific
data. The algorithm consists of a Kalman filter, an insulin controller,
a glucagon controller, a logic for controller switching and a bolus calculator.
A continuous glucose monitor provides the glucose feedback to the control
algorithm. In our solution, glucagon serves only as a safety feature. We
focus on using glucagon efficiently, in a non-aggressive way. Therefore,
safety of the insulin controller is the key aspect of the proposed control
algorithm.

Thesis Goals
Safety remains the main concern of the AP systems. Most solutions
focus solely on insulin to maintain euglycemia with no means available to
counteract the effects of insulin on board in case of overdosing. Overdosing
may result from an erroneous sensor reading, change in insulin sensitivity
or other patient-specific parameters, intensive exercise or overestimation of
a meal size. A number of clinical trials in [4–7], among others, provide
strong evidence that a dual-hormone AP is able to reduce the risk and
duration of hypoglycemic episodes and outperform the standard insulin
therapy in terms of hyperglycemia compensation at the same time.

Nevertheless, performance of all the discussed current solutions is still
incomparable with the quality of glucose regulation in a healthy individ-
ual. Therefore, further development of control algorithms for the artificial
pancreas remains an important challenge for both medical and control
engineering field. Hence, we summarize the thesis goals in the following
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points.

• Develop patient-specific models of glucose-insulin and glucose-
glucagon dynamics from available basic clinical data;

• Implement a Kalman filter as a state estimator and predictor;

• Design a dual-hormone control system for insulin and glucagon
infusion based on the patient-specific models;

• Design a linear MPC for insulin infusion with input constraints and
soft output constraints (asymmetric penalty function) and a time-
varying reference trajectory to increase robustness;

• Investigatea different options for glucagon controller - a PD controller
and an MPC (with asymmetric penalty function);

• Design a switching logic between insulin and glucagon controller;

• Investigate implementation of a single MIMO (in fact, MISO) MPC
manipulating both insulin and glucagon infusion;

• Implement a method for continuous identification of the patient model
used in the control system combining a priori known clinical data
with CGM measurement to ensure meaningful physiological repre-
sentation of the identified models;

• Design an adaptive control system for blood glucose control based on
the continuous patient model identification;

• Test and validate the designed control systems using suitable simula-
tion models.

1 Diabetes Mellitus

1.1 What Is Diabetes?
Diabetes is a chronic disease manifested by impaired control of blood
glucose concentration. It occurs when pancreas is not able to produce
enough insulin or when the body cannot use the insulin effectively. Insulin
is needed for transportation of glucose into the cells where it is used as
a source of energy. In people with diabetes the limited transportation
causes hyperglycemia - increased glucose concentration in the blood and
the interstitial tissue. Chronic hyperglycemia is associated to severe health
complications [2, 8].
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1.2 Type 1 Diabetes
Type 1 diabetes (T1D) results from a destruction of the β -cells of the islets
of Langerhans in pancreas by own immune system. Hence, T1D belongs
to autoimmune disorders. Development of the disease is related to genetic
predispositions and other factors, such as illnesses, infections or diet in early
years [8]. However, true causes of the autoimmune reaction are still not fully
understood and the disease cannot be prevented. T1D can occur at any age,
but mostly develops during childhood or young adulthood [2].

Even though the β -cells elimination occurs at various rates, most people
with T1D will eventually end up with little or no insulin secretion. Without
insulin, the glucose regulatory system of the body is critically impaired.
Consequently, they need to administer exogenous insulin every day to keep
their blood glucose under control and avoid serious complications or even
death.

Acute Diabetes Complications
Diabetic ketoacidosis and severe hypoglycemia are the most common acute,
life-threatening diabetic complications. These complications are mostly
associated with T1D.

People with T1D have an impaired glucose counter-regulatory system,
which is not able to react to decreasing glucose level. Overestimation of the
insulin dose or change in insulin sensitivity over time may result in insulin-
induced hypoglycemia. Mild hypoglycemia causes hunger, nervousness or
changes in mood. Severe hypoglycemia (below ca. 2 mmol/L) may in
extreme situations lead to a life-threatening diabetic coma [11].

1.3 Maintaining Euglycemia in T1D
Due to the lack of endogenous secretion of insulin, patients with T1D are
required to administer exogenous insulin in order to maintain euglycemia.
Nowadays, in addition to the conventional therapy, new technologies and
progressive therapies are emerging.

1.3.1 Conventional Therapy

Usual insulin therapy is based either on multiple daily injections of insulin
per day (MDI) with an insulin pen or on a continuous subcutaneous insulin
infusion (CSII) using an insulin pump.

Drawbacks of the Conventional Therapy
MDI strategy is a very simple method of substituting the pancreatic insulin
secretion in people with diabetes (T1D or T2D). Nevertheless, MDI with
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carefully chosen insulin regimen is capable of providing a remarkable
improvement in the diabetic control. Meta-studies indicate, that CSII with
pre-meal insulin boluses gives good results for the patients who are not able
to reach the glycemic control targets with MDI, but show little improvement
for the patients with successful MDI strategy [19].

1.4 Technology & T1D Treatment
Since the discovery of insulin, it has been common for people with diabetes
(either T1D or late stage of T2D) to inject themselves insulin several times
a day to keep glycemia under control. Besides the conventional treatment
drawbacks briefly discussed in 1.3.1, from the control point of view the
usual therapy is far from perfect. For decades, missing measurement
devices, which could be practically used and limited means of insulin
administration represented fundamental problems in development of more
advanced strategies of blood glucose control. Development of CGMs is an
important step in both patient self-monitoring of blood glucose as well as
in designing advanced algorithms for insulin administration. CGMs made
the missing real-time glucose feedback practically available and therefore
increase the potential of the intensive insulin therapy using CSII.

1.5 Artificial Pancreas
AP consists of a subcutaneous glucose sensor (a CGM), a subcutaneous
insulin infusion system (insulin pump) and a control algorithm. This is
often referred to as a sc-sc route [34]. Crucial part of the glucose control
system is the control algorithm.

Research in the field of AP shows a remarkable progress. With both the
CSII systems and CGMs available, various control strategies for glucose
concentration control have been investigated. Among others, PID control
[37–39], adaptive control [40–43], but also neural networks or fuzzy logic
control [44, 45]. So far, the most successful control approach is the model
predictive control (MPC), partly due to its ability to elegantly handle a broad
range of system constraints [35,46,47]. Some groups have already included
glucagon in their control systems [5, 6, 39, 54–57].

10



0 5 10 15 20
5

5.1

5.2

5.3

5.4

5.5

5.6

S
u

b
c
u

ta
n

e
o

u
s
 g

lu
c
o

s
e
 (

m
m

o
l/
L
)

Time (hours)

 

 

Simulation model (the patient)

Second−order model

(a) Insulin pulse response

0 5 10 15 20
5.4

5.6

5.8

6

6.2

Time (hours)

S
u

b
c
u

ta
n

e
o

u
s
 g

lu
c
o

s
e
 (

m
m

o
l/
L
)

 

 

Simulation model (the patient)

Second−order model
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Figure 1: Responses to insulin and glucagon boluses of the dual-hormone simulation
model (the patient) and the second-order approximations. The sizes of the insulin
and the glucagon boluses are 1U and 10µg, respectively.

2 Prediction Model and Filtering

2.1 Patient-specific Model for Glucose Prediction

2.1.1 The Deterministic Model

The deterministic part of the model takes form [69–72]

YD(s) = GI(s)UI(s)+GG(s)UG(s) (1)

where GI(s), GG(s) are the glucose-insulin and glucose-glucagon transfer
functions. UI(s), UG(s) denote the Laplace transforms of the subcutaneous
insulin and glucagon infusion rates. Unlike the above mentioned studies
on modeling the glucose dynamics, we use the following second order
continuous-time transfer functions to describe the effects of subcutaneously
administered insulin and glucagon [72]

GI(s) =
KI

(τIs+1)2 (2)

GG(s) =
KG

(τGs+1)2 (3)

Fig. 1 illustrates responses of the simulation model (a patient), and
the corresponding linear models (2)-(3) identified as described above. The
impulse-like responses correspond to 1U insulin and 10 µg glucagon doses.
The figure displays glucose concentrations in the subcutaneous tissue.
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2.1.2 The Stochastic Model

By augmenting the noise term described in [42] to the discretized deter-
ministic dual-hormone model we obtain a simple dual-hormone ARMAX
model

y(t) =
BI(q−1)

AI(q−1)
uI(t)+

BG(q−1)

AG(q−1)
uG(t)+

C(q−1)

AI(q−1)
ε(t), (4)

After a rearrangement the model takes form

Ā(q−1)y(t) = B̄I(q−1)uI(t)+ B̄G(q−1)uG(t)+C̄(q−1)ε(t) (5)

2.1.3 Innovation Form State Space Model

The ARMAX model (5) can be expressed in an equivalent form as a linear
time-invariant innovation form state space model [76] [77]

xk+1 = Axk +Buk +Kεk (6a)
yk =Cxk + εk (6b)

where εk ∼ N(0,Rε) and uk = [uI k uGk]
T is a vector of the insulin and

glucagon infusion rates computed at time instant k. We can realize the time-
invariant matrices A, B, C, K in the canonical observer form as described
in [76]. In reality, the white noise process, εk, is unknown. Therefore, we
substitute the white noise, εk, with innovation, ek, given by

ek = yk−Cx̂k|k−1 (7)

where x̂k|k−1 is a one-step prediction of the state vector xk computed at the
previous sampling instant, k−1.

2.2 Kalman Filter - State Estimator and Predictor
Each time a new measurement is available, we update (estimate) the state
vector using a stationary Kalman filter. As shown by Jørgensen et al. [77],
due to the perfect correlation between the process and measurement noise
in innovation form systems we can compute the filtered estimates as

ek = yk− x̂k|k−1 (8)

x̂k|k = x̂k|k−1 +K f x,kek = x̂k|k−1 (9)

ŵk|k = K f w,kek = ek (10)

12



and the one-step prediction and the predictions further ahead (with x̂k|k =
x̂k|k−1) are [77]

x̂k+1|k = Ax̂k|k−1 +Buk|k +Kek (11a)

ŷk+1|k =Cx̂k+1|k (11b)

x̂k+1+ j|k = Ax̂k+ j|k +Buk+ j|k j = 1,2, ...N−1 (11c)

ŷk+1+ j|k =Cx̂k+1+ j|k j = 1,2, ...N−1 (11d)

where N is the length of prediction horizon (number of samples).
The Kalman filter receives information about the current insulin and

glucagon doses, and the computed future infusion profiles. The feedback
from CGM enters the Kalman filter through the innovation (8). All the
information is used for computation of the one-step prediction of the glucose
concentration as well as the predictions further ahead.

It is important to note that by identifying the ARMAX model (5) with
the innovation form state space representation (6), we directly obtain the
Kalman filter one-step prediction gain, K.

3 Dual-hormone Control System

In this chapter we describe the design of a dual-hormone control system,
which utilizes the patient-specific models introduced in Chapter 2. The
CGM measurement provides feedback to the controller. The Kalman filter
(Section 2.2) is used for state estimation and predictions.

The insulin and glucagon controllers are separated to easily avoid
simultaneous infusion of insulin and glucagon. Insulin infusion is controlled
by an MPC, while for glucagon we consider an MPC and a PD controller.

3.1 Insulin and Glucagon Controller Switching
The main reason for separating the insulin and glucagon controller, even
under the MPC framework suiting MIMO systems well, is to avoid simul-
taneous infusion of insulin and glucagon in a straightforward way. We
consider 2 different approaches to switching between the controllers.

Threshold Switching
The first strategy is based on the principle of a relay with additional
hysteresis to prevent oscillations around the decision level. The insulin
delivery is suspended and the glucagon controller is activated when the
measured glycemia decreases below 4.5 (mmol/L). The insulin controller
is activated again when the glycemia reaches 5 (mmol/L). At the same time
we disable the glucagon controller.
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Predictive Switching
The second strategy is based on the Kalman filter predictions. Whenever
the Kalman filter predicts future hypoglycemia within a 2-hour horizon, we
switch on the glucagon controller and switch off the insulin controller.

3.2 Insulin Controller
The insulin MPC uses prediction and control horizons of identical length,
N. Due to the slow glucose-insulin dynamics discussed earlier, we use
prediction (control) horizon of 10 hours, corresponding to N = 120. At
each sampling instant, the optimal insulin dosing over the control horizon is
obtained by solution of the constrained convex quadratic program (QP) in
the form [70, 71]

min
{uI; j ,η j+1}N−1

j=0

φ (12a)

s. t. x̂k+1|k = Ax̂k|k−1 +BIuI; k|k +Kek (12b)

ŷk+1|k =Cx̂k+1|k (12c)

x̂k+1+ j|k = Ax̂k+ j|k +BIuI; k+ j|k j ∈N1 (12d)

ŷk+1+ j|k =Cx̂k+1+ j|k j ∈N1 (12e)

uI;min ≤ uI; k+ j−1|k ≤ uI;max j ∈N0 (12f)

ŷk+ j|k ≥ ymin− η̂k+ j|k j ∈N0 (12g)

ŷk+ j|k ≤ ymax + η̂k+ j|k j ∈N0 (12h)

η̂k+ j|k ≥ 0 j ∈N0 (12i)

with N0={1,...,N}, N1={1,...,N-1}. Apart from the system (model) dynam-
ics, (12b) - (12e), we impose hard input constraints, (12f), and soft output
constraints, (12g) - (12i). Using the soft constraints, the objective function,
φ , takes the form [72]

φ =
1
2

N−1

∑
j=0

glucose penalty function︷ ︸︸ ︷
‖ŷk+1+ j|k− rk+1+ j|k‖2 + γ‖η̂k+1+ j|k‖2

+
1
2

N−1

∑
j=0

λI‖∆uI;k+ j|k‖2︸ ︷︷ ︸
regularization term

(13)

In the glucose penalty function, the first term penalizes the error of
tracking the reference trajectory, rk+1+ j|k, while the term,γ‖η̂k+1+ j|k‖2

penalizes violations of the soft output constraints (12g)-(12h), η̂k+ j|k. The
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lower and upper soft constraints, ymin = 4.5 mmol/L and ymax = 10 mmol/L,
are asymmetrical with respect to the target (steady-state) glucose concen-
tration of 5.5 mmol/L. The constraints setting corresponds to the limits
of hypo- and hyperglycemia. By using a large weighting factor, γ = 100,
we heavily penalize the glucose excursions into hypo- and hyperglycemic
range [69–71].

By penalizing the changes in insulin delivery, the regularization term
λI‖∆uI;k+ j|k‖2 smoothens the control action, reduces the aggressiveness of
insulin dosing and reduces the sensitivity to measurement noise. For each
patient, the algorithm is individualized using the weighting coefficient λ .
Based on simulation results, we empirically obtained the rule λI = 600/uI;b
for the individualization using the basal insulin infusion rate, uI;b, which
maintains steady-state glucose level 5.5 mmol/L.

The computed insulin infusion rate is a deviation from the basal infusion
rate, uI;b.

3.2.1 Safety Modifications

Asymmetric Reference Trajectory
In order to avoid aggressive control actions due to the effects of sensor
(estimation) error and increase robustness of the controller, we implement
a time-varying reference trajectory. This approach has been applied pre-
viously [42, 80]. Computation of the desired trajectory is based on the
current estimate of the glucose concentration, yk, and depends on whether
the estimate is above or below the target as follows [69–71]

rk+ j|k(t) =

{
yke−t/τr if yk ≥ 0 (∼ BG≥ 5.5) mmol/L
0 if yk < 0 (∼ BG < 5.5) mmol/L

(14)

Both r and y are deviations from the target concentration. If the glycemia is
too high, we apply an asymptotic reference converging to the target, where
the aggressiveness is limited by the time constant τr = 60 min.

Limitation of the Maximal Insulin Dose
To further increase the safety of the algorithm, in each sampling instant we
determine a maximal allowed insulin infusion rate from a set of simple rules
as follows [42, 69–71]

uI;max =


1.5uI;b if yk ≥ 4.5 (∼ BG≥ 10) mmol/L
uI;b if 0≤ yk < 4.5 (∼ 5.5≤ BG < 10) mmol/L
0 if yk < 0 (∼ BG < 5.5) mmol/L

(15)

where uI;max and y are deviations from the basal insulin infusion rate and
glucose target, respectively.
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3.2.2 Mealtime Bolus Administration

We consider 2 different strategies of the bolus calculator implementa-
tion. Both strategies include bolus calculation based on the insulin-to-
carbohydrate ratio, IC (U/g), and the meal size (g). The IC is easy to
estimate from the ISF and the patient’s glucose rise after meal of a known
size. In principle, the value of IC itself describes the amount of bolus insulin
units (U) needed to compensate the postprandial glucose peak following
a meal of size 1g. Hence, the correct (full) bolus to compensate the peak
following a meal containing CHO g of carbohydrates is given by

IB100 = IC ·CHO (U) (16)

Controller administers the bolus only if the meal and its size is announced
by the patient at meal time. In addition, the control algorithm will not
allow glucagon infusion in a 30 minute period following the announced
meal ingestion.

Standard Bolus
To prevent an insulin overdose, we do not administer 100% of the bolus
computed by (16). Instead, we adjust the dose according to the current
glucose level estimate

IB =


0.7 IB100 if yk ≥−1 (BG≥ 4.5) (mmol/L)
0.4 IB100 if −1.6≤ yk <−1 (3.9≤ BG < 4.5) (mmol/L)
0 if yk <−1.6 (BG < 3.9) (mmol/L)

(17)

Bolus with Insulin Suspension
In [72, 73] we consider a modified bolus administration strategy, where the
bolus is also adjusted with a safety factor, κ ∈ [0 , 1]

IB = κ IB100 (18)

In contrast to the first strategy, κ is not dependent on the current glucose
level. We estimate its value for each virtual patient empirically with respect
to the individual glucose-insulin dynamics. The slower the dynamics is, the
lower κ is chosen to avoid late hypoglycemia.

Results of Walsh and Roberts [84], Bondia et al. [85] and Boronat et
al. [86] provide evidence supporting this approach due to mismatch between
the insulin and meal dynamics. The results indicate that the so-called "super
bolus" [84] provides better compensation of the glucose peak following
a meal. In addition, suspending the insulin infusion after the bolus lowers
the risk of insulin-induced hypoglycemia in the late postprandial period
[84, 86].
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Figure 2: Penalization of the glucose concentration excursions in the insulin (full
line) and glucagon (dashed line) MPC.

3.3 Glucagon Controller

3.3.1 Glucagon MPC

The glucagon MPC is based on the same structure as the insulin MPC (12b)-
(12i). However, in the predictions we only use the glucagon control action,
uG, and the vector BG corresponding to the glucagon input of the model.

Soft constraints (12g)-(12h) are used to prevent hypoglycemia and to
avoid excessive glucagon dosing. The lower and upper bounds correspond
to 4.5 mmol/L and 6 mmol/L. The soft constraint violation penalty remains
the same as in the insulin MPC with γ = 100. To reduce sensitivity
to measurement and process noises we penalize the changes in glucagon
infusion using weighting coefficient λG = 0.1. The glucagon MPC uses
a constant target set to 5 mmol/L (∼ rg = −0.5 mmol/L expressed as
a deviation from the target). Fig. 2 provides a comparison of the glucose
penalty functions used in the insulin and the glucagon MPC.

3.3.2 Glucagon PD Controller

The second controller for glucagon infusion that we consider is a PD
controller with the control law

uG;k = KPD(eg;k +Td/Ts∆eg;k) (19)
eg;k = rg− yk (20)

∆eg;k = eg;k− eg;k−1 (21)
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where the controller setpoint, rg, corresponds to 5 mmol/L (∼ rg=-0.5
mmol/L expressed as a deviation from the steady state glucose concentration
of 5.5 mmol/L), Ts is the sampling time and KPD, Td are the controller
parameters. Aggressiveness of the controller depends on the current glucose
level estimate. Below 3.9 mmol/L (yk ≤ −1.6 mmol/L as a deviation
variable) the controller is more aggressive (KPD = 2/KG, T = 2τG) than
above this threshold (KPD = 1/KG Td = 0.33T ). For tuning of the controller
parameters, KPD and Td , we employ the "t-sum rule" proposed by Kuhn [87].

To reduce sensitivity of the derivative part to the CGM noise (even
after filtering), we evaluate the changes in the control error, eg, between
the current and previous sample (rg is a constant, therefore, any change in
yk is directly reflected into the change in eg). If necessary, we limit the
changes in eg according to the maximal values considered physiologic (+/-
0.22 mmol/L/min) [88].

3.4 Dual-hormone Adaptive Control
For the purpose of continuous identification we express the ARMAX model
(5) in the form

y f ;k = φ
T
1;kθ1 +φ

T
2;kθ2 +φ

T
k θ̂k + ek (22)

where θ1 and θ2 are constant vectors, as we do not identify the parameters
of insulin and glucagon action on glucose or glucose action per se. We
only identify the vector θ̂ , which represents coefficients of the polynomial
C(q−1) in the noise term of the ARMAX model. φ1, φ2 and φ are
matrices containing the past input/output data. y f ;k−1− y f ;k−4 denote CGM
measurements filtered using a low pass filter. The continuous identification
of parameters c1, c2 is performed in each sampling instant by minimizing
the one-step prediction error, ek, using the recursive least squares algorithm
(RELS) as follows

ea;k = y f ;k−φ
T
1;kθ1−φ

T
2;kθ2−φ

T
k θ̂k−1 (23a)

Ka;k =
Pk−1φk

µ +φ T
k Pk−1φk

(23b)

θ̂k = θ̂k−1 +Ka;kea;k (23c)

Pk =
1
µ

(
Pk−1−

Pk−1φkφ T
k Pk−1

µ +φ T
k Pk−1φk

)
(23d)

Ka;k denotes the adaptation gain, Pk is the disperse matrix initialized with
a diagonal matrix - P0 = diag(100,100). The forgetting factor, µ , defines
the algorithm memory. We use µ = 0.99, which corresponds to memory
length nm = 1/(1−µ)

.
= 100 samples, or 500 minutes.
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We only accept the identified parameters if the roots of C(q−1) lie
within the unit circle of the complex plane. The accepted values are
used to compute the polynomial C̄(q−1) = AG(q−1)C(q−1), which directly
determines the Kalman filter gain in the innovation form state space model.

4 Simulation Results

4.1 Dual-hormone Simulation Model
A wide range of models of various complexity describe the glucose
metabolism and the glucose-insulin dynamics [47]. a few dual-hormone
models incorporate the effects of insulin as well as glucagon [39, 59, 60].

For simulation purposes we use a model proposed in [39], which extends
the minimal model of plasma glucose and insulin kinetics with glucagon ac-
tion on endogenous glucose production, a subcutaneous insulin absorption
model and a gastrointestinal absorption model proposed by Hovorka [50].
A system of ordinary differential equations (ODEs) describes the dual-
hormone model as follows [39].

In our simulations, feedback to the controller is provided by a CGM.
The sensor does not measure blood glucose concentration directly. Instead,
it measures glucose concentration in the interstitial tissue. In the following
we consider CGM models proposed by Breton and Kovatchev [61], and
Facchinetti et al. [62].

4.2 Verification of the Insulin Controller Using Hov-
orka Model

The control algorithm is equipped with the bolus calculator, which suspends
the insulin delivery for 3 hours following the bolus administration. Due
to the fact that the carbohydrate absorption in Hovorka model is relatively
fast compared to the insulin absorption, the bolus calculator utilizes a fixed
safety factor κ = 0.65.

The simulation scenario includes a meal regimen consisting of breakfast
at 06:00, lunch at 12:00 and dinner at 18:00. We consider daily carbohydrate
intake of 3g per kg of body weight with 33% contained in breakfast, 40%
in lunch and 27% in dinner. We simulate the scenario for 100 randomly
generated VPs and evaluate the controller closed-loop performance by
means of a control variability grid analysis (CVGA) plot [90]. In addition,
we provide the mean glucose and insulin traces together with corresponding
standard deviations.

The results presented in Fig. 3 and Fig. 4 confirm that we managed to
meet the MPC design goals. The major concern in T1D treatment is insulin-
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Figure 3: Verification of the insulin MPC. CVGA plot [90] for 100 virtual patients
generated using the Hovorka model [50].
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induced hypoglycemia. From 100 virtual patients only 3 patients encounter
mild hypoglycemia (G<3.9 mmol/L) with the lowest observed glucose level
Gmin = 3.5 mmol/L and 3 other patients are at the boundary of normo- and
hypoglycemic range.

4.3 Glucagon MPC with Predictive Activation and
Insulin Suspension after Bolus

Simulated scenarios include insulin-only, dual-hormone with relay switch-
ing and dual-hormone with predictive switching strategies tested when the
insulin sensitivity of the patients is 40% larger compared to the model used
in the MPC. Fig. 5 reports performance of the dual-hormone controller with
relay and predictive switching in the scenario with increased insulin sensi-
tivity. Results for all considered strategies, summarized in Table 1, suggest
that a combination of the predictive switching between insulin and glucagon
controllers together with the insulin suspension after mealtime bolus is very
effective in avoiding insulin induced postprandial hypoglycemia, even when
there is a substantial patient-model mismatch.

Simulations are in a good agreement with the previously obtained
results. On average, across the 3 virtual patients and all glucagon infusion
episodes, the predictive switching leads to approximately 33 minute earlier
initiation of the glucagon administration. This results in a significant
reduction of time spent in hypoglycemia (G<3.9 mmol/L) in the scenario
with increased insulin sensitivity in case of virtual patient 1. The relative
decrease exceeds 50% - from 9.67% to 4.67% of the total simulation time,
as reported in Table 1. However, difference in the minimal glucose level
observed is insignificant with Gmin = 3.7 mmol/L in case of the predictive
switching vs. Gmin = 3.6 mmol/L in case of the relay switching.

It is also important to note that the 50% reduction of time spent in
hypoglycemia in virtual patient 1 is achieved at the cost of only 14%
increase in the total amount of glucagon administered. This is consistent
with the results of Bakhtiani et al. [91] that proper administration is an
important factor determining the glucagon efficiency and injecting glucagon
too late may compromise its action.

4.4 Comparison of Adaptive and Non-Adaptive
Dual-Hormone AP

We test the adaptive algorithm presented in subsection 3.4 using the pre-
dictive switching between insulin and glucagon controller and the insulin
suspension after mealtime bolus. The simulation scenario is based on
a meal plan identical to the meal plan used in simulations in subsection

21



Table 1: Summary of the experiment - insulin only (I), dual-hormone with relay
switching (IG/R) and dual-hormone control with predictive switching (IG/P). The
table reports percentage of time spent in different glucose ranges, min / max /
mean glucose level and total insulin / glucagon administration. The amount of
administered insulin does not include the mealtime bolus insulin.

Normal IS Increased IS
[G] = mmol/L I IG/R IG/P I IG/R IG/P

P1 G > 10 (%) 4.00 4.00 4.00 2.00 2.00 2.00
8≤ G≤ 10 (%) 10.33 12.33 12.00 8.00 17.67 11.67
3.9≤ G≤ 8 (%) 85.67 83.67 84.00 73.33 70.67 81.66

G < 3.9 (%) 0.00 0.00 0.00 16.67 9.67 4.67
mean G 6.21 6.31 6.32 5.70 6.11 6.07
min G 4.06 4.30 4.47 3.47 3.60 3.71
max G 10.96 10.96 10.96 10.28 10.28 10.28

Insulin (U) 7.26 7.22 7.75 6.81 7.37 7.72
Glucagon (µg) 0.00 31.78 50.84 0.00 141.72 162.47

P2 G > 10 (%) 23.67 24.33 24.67 17.67 19.00 18.33
8≤ G≤ 10 (%) 14.00 14.00 14.00 12.33 11.67 12.34
3.9≤ G≤ 8 (%) 62.33 61.67 61.33 64.67 69.33 69.33

G < 3.9 (%) 0.00 0.00 0.00 5.33 0.00 0.00
mean G 7.95 8.03 8.04 7.36 7.54 7.52
min G 4.04 4.49 4.58 3.46 4.21 4.53
max G 13.17 13.76 13.64 12.22 13.47 13.17

Insulin (U) 5.12 5.15 5.18 5.47 5.54 5.55
Glucagon (µg) 0.00 10.05 12.25 0.00 26.77 27.89

P3 G > 10 (%) 2.67 2.67 2.67 0.00 0.00 0.00
8≤ G≤ 10 (%) 13.33 14.00 14.00 7.67 7.67 7.67
3.9≤ G≤ 8 (%) 84.00 83.33 83.33 77 92.33 92.33

G < 3.9 (%) 0.00 0.00 0.00 15.33 0.00 0.00
mean G 6.18 6.28 6.25 5.40 5.69 5.70
min G 4.30 4.49 4.61 3.57 3.97 4.03
max G 10.22 10.22 10.22 9.56 9.56 9.57

Insulin (U) 2.92 3.85 4.40 2.41 3.74 3.42
Glucagon (µg) 0.00 48.09 50.66 0.00 170.71 191.45
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Figure 5: Dual-hormone AP with a) relay switching, b) predictive switching and
insulin suspension after mealtime bolus. The IS is 40% larger compared to the
nominal case when the model used in the MPC was estimated [72].
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4.3. The simulation time is 5 days, where after day 2 the insulin sensitivity
is increased by 40%.

The simulation results indicate that adaptation of the prediction model
noise term further reduces time spent in hypoglycemia. In all 3 virtual pa-
tients, the adaptive control algorithm eliminated hypoglycemia completely
with 0% of the time spent in the hypoglycemic range. On the other hand,
the reduction is accompanied with slightly elevated mean glucose levels
and glucagon delivery. While the increase in glucose level is minimal, the
increase in glucagon delivery is more significant - 11% in patient 1, 4% in
patient 2 and 53% in patient 3.

The comparison reveals that the adaptive control algorithm performs
slightly better, mainly due to the elimination of hypoglycemia. The differ-
ence from non-adaptive control is very small, though. This finding supports
the results from [73], that in the closed-loop setup the quality of prediction
model is not as critical as expected. The most important aspect seems to be
the presence of feedback.

Conclusion

The proposed dual-hormone control algorithm implements an innovation
form state-space model realization of a relatively simple ARMAX model.
The ARMAX model is based on second-order linear models describing the
glucose-insulin and glucose-glucagon dynamics, and the effects of other
unknown factors. Identification of the linear models requires only basic
patient-specific data that is either a priori known or easy to obtain in clinical
practice. The data includes insulin sensitivity factor, peak insulin action
time and corresponding parameters of the glucagon action. Carbohydrate
intake represents the major disturbance acting on the blood glucose. Due
to large uncertainty in the carbohydrate absorption, we do not model the
meal dynamics explicitly. Instead, we use the noise term of the ARMAX
model to account for all unknown factors, including the meals. In the non-
adaptive version, we use the noise term parameters identified previously
by Duun-Henriksen et al. [75]. In the adaptive version, the parameters are
continuously identified using the recursive least squares algorithm.

The dual-hormone control algorithm consists of a Kalman filter and sep-
arated insulin and glucagon controllers. The insulin infusion is controlled by
an MPC, which is a commonly used approach. We compare a PD controller
and an MPC for glucagon manipulation. The switching between the insulin
and glucagon controllers is performed either using a threshold of certain
glucose level with hysteresis or using the Kalman filter predictions. The
control algorithm is designed to focus mainly on insulin and use glucagon
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only as a safety feature. Therefore, large emphasis is put on the safety of
the insulin controller.

We can conclude from the simulation results that the best performance,
in terms of the tradeoff between hyperglycemia compensation and hypo-
glycemia prevention, is obtained with both insulin and glucagon infusion
manipulated by MPCs and their switching governed by the Kalman filter
glucose predictions. The MPCs are equipped with with hard input con-
straints limiting the maximal allowed infusion rates, soft output constraints
imposing heavy penalization (if violated) of glucose excursions into hyper-
and hypoglycemic range. Additional safety modifications include asym-
metric reference signal and modifying the allowed infusion rates according
to the current glucose level estimate. In addition, we implement a bolus
calculator with a 3-hour insulin suspension following the bolus to reduce
the risk of a late postprandial hypoglycemia.

Verification of the insulin controller performed on a cohort of ran-
domly generated virtual patients using the Hovorka model confirms that
the controller meets the design goals. During a challenging simulation
scenario, no episode of severe hypoglycemia occurs. The dual-hormone
control algorithm proves to be able to regulate glucose safely even in the
simulation scenarios, where the insulin sensitivity increases unexpectedly
or if the mealtime insulin boluses are overestimated.

Thesis Contribution
We can summarize the thesis contribution as follows

• Introduction of a control oriented dual-hormone model for glucose
prediction, which can be identified only from basic, commonly known
patient-specific data or, if the data is not available for a particular
patient, using a simple experiment;

• Implementation of a dual-homorne control algorithm with the focus
on the insulin controller safety and using glucagon as a safety feature
in a non-aggressive way. The algorithm consists of a Kalman filter,
separated insulin and glucagon model predictive controllers with hard
and soft safety constraints, and a bolus calculator;

• a control structure allowing both dual- and single-hormone (insulin-
only) control without any modifications needed thanks to the separa-
tion of the controllers;

• Comparison of the glucagon MPC and PD controllers;
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• Evaluation of a controller switching strategy based on a certain glu-
cose level threshold with hysteresis and a strategy using the Kalman
filter glucose predictions;

• Comparison of a standard bolus calculator and a bolus calculator with
insulin suspension following the bolus;

• Introduction of a dual-hormone adaptive control using a continuous
identification of the model with ARMAX structure using the recursive
least squares algorithm.

The presented work is a result of collaboration with the Technical
University of Denmark, which lead, among others, to publications pre-
sented at IEEE and IFAC conferences including IEEE American Control
Conference (ACC 2015), IEEE European Control Conference (ECC 2015),
IEEE Conference on Control Applications (CCA 2014), IFAC Symposium
on Biomedical Systems (IFAC BMS 2015), and a journal paper submitted to
IEEE Transactions on Control Engineering Technology, which is currently
under review.
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and F. J. D. III, “Modeling the effects of subcutaneous insulin administra-
tion and carbohydrate consumption on blood glucose,” Journal of Diabetes
Science and Technology, vol. 4, no. 5, pp. 1214–1228, 2010.

[66] K. van Heusden, E. Dassau, H. C. Zisser, D. E. Seborg, and F. J. Doyle III,
“Control-relevant models for glucose control using a priori patient character-
istics,” IEEE transactions on biomedical engineering, vol. 59, no. 7, pp. 1839
– 1849, 2012.

[67] M. Tárník, V. Bátora, J. B. Jørgensen, D. Boiroux, E. Miklovičová, T. Lud-
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