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Abstrakt

Spánok je spojitý heterogénny proces, ktorý počas noci prechádza konečným počtom spánkových
stavov. Jeho kvalita a štruktúra vo výraznej miere ovplyvňujú naše každodenné správanie. Spán-
kový elektroencefalogram (EEG) zachytávajúci aktivitu mozgu počas spánku tvorí základný kameň
tejto práce. Nameraný EEG signál je následne spracovaný pomocou pravdepodobnostného spán-
kového modelu a reprezentovaný konečnou množinou spánkových pravdepodobnostných kriviek.
Prvá časť práce je zameraná na detekciu spánkových profilov, ktoré významne súvisia s dennými
mierami (subjektívne hodnotenie kvality spánku, fyziologický stav organizmu, kognitívne testo-
vanie) pomocou metód funkcionálnej dátovej analýzy, konkrétne zhlukovej analýzy spánkových
kriviek. Ak spánkové krivky nie sú synchronizované v čase, zhluková analýza môže viesť k zarade-
niu kriviek s podobným profilom do rôznych zhlukov. Existujúce metódy simultánne kombinujúce
zhlukovanie a synchronizáciu kriviek pri aplikácii na spánkové dáta nevedú k uspokojivým výsled-
kom. Z tohto dôvodu sme navrhli vlastnú metódu, ktorá iteračne kombinuje zhlukovú analýzu
kriviek a časovú synchronizáciu. Jej benefity oproti existujúcim prístupom sú demonštrované
na dvoch množinách spánkových dát. Vzniknuté zhluky obsahujú dva typy variability – medzi
zhlukmi a v rámci zhlukov. Na detekciu a analýzu oboch druhov variability sme si zvolili viac-
stupňovú funkcionálnu verziu metódy hlavných komponentov. Táto metóda bola pôvodne určená
len pre dáta s rovnakým počtom pozorovaní v rámci zhlukov. V tejto práci uvádzame aj jej verziu
rozšírenú na prípad, keď sa počet pozorovaní medzi zhlukmi líši.
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Introduction

Sleep is a dynamical process which plays important role in our lives. Its structure, quality and
length influences humans daily behaviour, affectivity, mood and also health.

The Probabilistic sleep model (PSM) [17] provides a continuous representation of the sleep
process. The PSM operates on three–second long time segments of the EEG and EMG signal for
each of which probability values of their relationship to one of sleep states – called microstates – is
computed. Considering the probability values of a sleep microstate as a function of time we obtain
a sleep probabilistic curve.

Current studies dealing with relationship between sleep structure and humans’ physiological
state or well-being measures are based on the extraction of one–dimensional sleep characteristics
and their correlation with variables representing daily life behaviour. We hypothesise, that this
may result into the loss of an important information about the sleep dynamics. Fortunately,
character of sleep probabilistic curves offers a way for inspection of the sleep structure through
functional data analysis.

This thesis provides an overview of chosen techniques of the functional data analysis which
may be useful in the sleep structure analysis and its relationships with daily measures representing
subjective feelings in the morning, physiological state of an organism and performance of subjects
in neuropsychological tests. We focus on functional cluster analysis as a method for detecting
subgroups of patients with similar sleep profiles. Methods developed for the time synchronisation
of curves are considered to prevent misclassification of curves due to the curves misalignment. In
the thesis we carefully analyse and compare existing approaches where i) curves alignment precede
the clustering step, and ii) curves alignment and cluster analysis are performed simultaneously
with our own proposed method. Moreover, we pay a careful attention to the analysis of benefits
of the curves alignment for each sleep microstate separately.

A major problem in the sleep structure research is individual pattern present in each subject’s
sleep profile. Despite the Multilevel functional principal component analysis [6] is a technique a
priori developed for as a dimensionality reduction in functional datasets with repeated measure-
ments, it can be used also for extraction of the subject–specific profiles. We adapt the methodology
for the case when the number of observations differs among objects and applied it to a dataset of
healthy sleepers.
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1 Goals of the dissertation thesis

1. Analysis of sleep structure provided by the Probabilistic sleep model and methods of func-
tional data analysis in i) dataset of healthy subjects without serious sleep problems and ii)
patients following an ischemic stroke.

2. Detection of relationships between sleep structure and daily measures (questionnaires about
sleep and awakening quality, mood or drowsiness; neurocognitive tests for short–term memo-
ry, fine motor activity; pulse rate, blood pressure) by methods of functional cluster analysis.

3. Adaptation of existing methods or proposition of a new method for simultaneous alignment
and cluster analysis of sleep probabilistic curves.

4. Analysis of advantages and disadvantages of the curves alignment for each sleep stage and
each sleep microstate separately.

5. Analysis of relationships between differences in sleep structure of two nights of subjects and
corresponding difference in daily measures by the Multilevel functional principal component
analysis (MFPCA).

6. Adaptation of the MFPCA method to datasets with repeated observations, where i) the
order of observations within subjects is exchangeable, and ii) number of observations varies
with subjects.

7. Application of the modified MFPCA method to the sleep dataset with the aim to extract
the subject–specific profiles and consequently to remove the individual pattern from subjects
sleep probabilistic curves.

2



2 Sleep datasets

In this section two sleep datasets used in the thesis are described in details – the database of
subjects without serious sleep problems and the database of patients after ischemic stroke.

2.1 SIESTA database

The European sleep database SIESTA [15] is a systematic polysomnographic (PSG) database with
sleep recordings of 300 subjects. In the thesis we used a subset of the SIESTA database including
PSG recordings of 146 subjects without serious sleep problems spending two consecutive nights in
the sleep lab. The database consists of 85 men and 61 women (average age of 53 years).

The PSG measurement started right after going to bed and switching the lights off, the recording
stopped after a subject awoke spontaneously. The EEG signal was measured by three pairs of
electrodes (Figure 1) – frontal (Fp1–M2, Fp2–M1), central (C3–M2, C4–M1) and occipital (O1–
M2, O2–M1). The reference electrodes M1 and M2 were placed on the mastoid. Two electrodes
for monitoring the muscle activity were placed above the chin of a subject, the reference electrode
was applied below the chin.

Figure 1: The scalp placement of three pairs of electrodes used for the EEG signal recording. The
original image can be found in [21].

After awakening subjects filled out several questionnaires scoring their sleep and awakening
quality [34], well–being [39] and the level of mood or drowsiness in the morning [1]. The subjects
performed several neuropsychologic tests for the assessment of attention, attention variability,
concentration, short–term memory and fine motor activity [11; 29]. Finally, the evening blood
pressure and pulse values were recorded before bedtime and in the morning after sleep. The list

3



of all daily measures can be found in Table 1.

Daily measure

Self–rating questionnaire for sleep and awakening quality and somatic complaints [34]

Visual analogue scale test for drive, mood, affectivity and drowsiness [1]

Well–being self assessment scale [39]; morning/evening

pulse rate; morning/evening

systolic blood pressure; morning/evening

diastolic blood pressure; morning/evening

Numerical memory test [11]

Alphabetical cross–out test [11]; total score, attention variability, % of errors

Fine motor activity test [11]; right/left hand

Table 1: The list of daily measures of the healthy sleepers from the SIESTA database.

2.2 Patients following ischemic stroke

In the thesis the database of PSG recordings of 24 patients after ischemic stroke hospitalised at
the 1st Department of the Neurology, Comenius University in Bratislava was used. The standard
overnight PSG recording took place one to 10 days after a stroke occurred.

The EEG signal of patients after stroke was measured only by two pairs of electrodes – central
(C3–A2, C4–A1) and occipital (O1–A2, O2–A1). The reference electrodes A1 and A2 were placed
on ear lobes. The EMG signal was measured in the same way as in the case of the SIESTA
database.

The patients also took part in a battery of cognitive tests for the assessment of fine motor
activity, attention (LANT [10]), reaction time and working memory [13] performed in the morning
after the PSG recording. The T–MENSTAT questionnaire [25] was filled by subjects before and
after performing the neurocognitive tests. The list of all daily measures can be found in Table 2.
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Daily measure

Fine motor activity test

- number of correctly retraced pixels in a pattern n = 1, 2, 3, 4, 5, 6

- number of successes in pattern n

Reaction time test

- average reaction time in a trial n = 1, 2, 3, 4

- the minimal reaction time

- the mean reaction time across trials

Working memory test [13]; forward/backward

Lateralised attention network test [10]

- alerting

- conflict

- orienting facilitatory/ inhibitory

T–MENSTAT questionnaire [25]; performed before/after neurocognitive tests

Table 2: The list of daily measures for the patients after stroke.

3 Probabilistic sleep model

The Probabilistic sleep model (PSM) [17] characterises sleep with probability values of a finite
number of sleep states called sleep microstates. Lewandowski et al. [17] empirically set the number
of microstates to 20. In this thesis we focus on the modified version of PSM described in [31].

The EEG signal from all available pairs of electrodes and the EMG signal are partitioned into
non–overlapping time intervals of the length of three seconds. Then, for each time window and
each electrode separately, coefficients of an autoregressive model of order m are estimated with the
Burg method (m = 5 for the EEG signal and m = 2 for the EMG signal) and presence of artefacts
is properly detected by the Somnolyzer 24x7 [2] or BrainVision Analyser 2 [3] softwares. Finally,
the autoregressive coefficients of the EEG signal from three EEG electrodes and the EMG signal
are merged into one vector of the length 17 in the following order [Fpx, Cx, Ox, EMG], where x
represents either left or artefacts free EEG electrode at the frontal (Fp), central (C) or the occipital
(O) spatial site. In the case of patients after stroke the vector has the form [Cx, Ox] due to the
absence of the EEG signal from the frontal pair of electrodes and presence of artefacts in the EMG
signal.

Let a denotes the vector of autoregressive coefficients and p(z) is an unknown probability, that
we are in a microstate z 2 {1, . . . , 20} in a given time window. A Gaussian mixture model is then
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Figure 2: An example of the sleep probabilistic curves for 20 microstates of a 42–year–old healthy
man.

estimated in the space of autoregressive coefficients

p(a) =
20X

z=1

p(z)p(a|z) =
20X

z=1

⇡zN (a|µz,⌃z) . (1)

Here, N (a|µ,⌃) denotes the probability distribution function of a normal distribution with mean
µ and covariance matrix ⌃ evaluated at the vector a.

Lewandovski et al. [17] estimated the unknown probabilities in (1) by the Expectation–
Maximisation algorithm. Moreover, to improve physiological interpretation of sleep microstates the
PSM also estimates the probability weights for each microstate to the standard sleep stages Wake,
S1, S2, slow wave sleep (SWS) and REM [28]. For example, Microstate 2 is similar to the Wake
stage with probability 73% and to the S1 stage with probability 21%. The sum of probabilities of
similarity to the sleep stages S2, SWS and REM is then 6%.

Considering the probability values for a given microstate z as a function of time we obtain a
sleep probabilistic curve. An example of the sleep probabilistic curves for a 42–year–old healthy
man is depicted in Figure 2.
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4 Cluster analysis of sleep probabilistic curves

The focused objective of our thesis is to identify specific sleep profiles (sleep biomarkers) associated
with selected physiological aspects of sleep. An important property of such sleep biomarkers
would be their relationship with different physiological, demographic or daily life measures. This
may include physiological factors as blood pressure, pulse rate or others, results of questionnaires
about subjective sleep quality, mood, drowsiness or results of neurophysiological tests focused on
attention, fine motor activity or short–term memory [29].

In the literature a common practise is to use one–dimensional characteristics and to compute
their correlation with daily measures. However, these one–dimensional variables may miss some
information about the over–night sleep dynamics. Therefore we prefer to use the whole sleep
probabilistic curve information when detecting relationships between the sleep structure and daily
life behaviour.

One possible approach in the sleep probabilistic curves analysis is cluster analysis – the set of
all sleep probabilistic curves is divided into subgroups according to the similarity in their shape.
Then the Kruskal–Wallis test can be applied with the aim to detect whether the formed clusters
significantly differ in values of daily measures.

However, the cluster analysis of the sleep probabilistic curves faces problems when curves
misalignment is present. We say, that two curves are similar, but misaligned in time, if they have
a common overall shape, but their important features like local maxima, minima or zero crossings
occur at different time points (Figure 3a). Therefore, the distance measures for curves may reach
high values and consequently the clustering techniques will consider these curves as dissimilar and
assign them into different clusters.

Ramsay and Silverman [27] recommend to align the curves in time before performing further
analysis. In the next section we formulate the curves alignment problem in a mathematical way.
A brief overview of the existing curves alignment methods is given as well.

4.1 Time alignment of curves

Let consider a pair of curves X1, X2 which are defined over a closed time interval T . Without loss
of generality we assume T = [0, 1]. To register or temporally align a pair of curves X1, X2 means
to find a continuous function h? : T ! T from the set H of all strictly increasing transformations
of the time interval T such that

h?
2 argminh2H S (X1, X2 � h) , (2)
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under the condition of the common start and end point h?(0) = 0, h?(1) = 1. S in (2) denotes a
distance between curves X1, X2; for example the Ln distance

Ln(X1, X2) =

✓Z

T

⇣
X1(t)�X2(t)

⌘n
dt

◆ 1
n

. (3)

The time transformation h? is called the warping function. An example of two in time misaligned
smoothed sleep probabilistic curves, their aligned version by using the criterion (3) and the corre-
sponding warping function is depicted in Figure 3.
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Figure 3: An example of two smoothed sleep probabilistic curves varying in time (left), their
aligned versions by using the criterion (3) with n = 2 (middle) and the corresponding warping
function (right). The original time was transformed into the interval [0,1].

Many curves alignment methods [24; 37; 38] consider a restriction to the distance between the
real time and the warping function to avoid close to ideal alignment of possibly dissimilar curves
caused by the warping function running too far from the real time. For example, a penalty term

�

Z

T

⇣
h

0
(t)� 1

⌘2
dt,

is added into the cost function (2). More examples can be found in [36, Chapter 8].

4.2 Methods for time alignment and cluster analysis of curves

The most natural approach for solving the problem of clustering misaligned curves is to align the
whole set of curves before the clustering step. The choice of the curves alignment method depends
on the character of the given data. Following our practical experience with the time alignment of
the sleep probabilistic curves in this thesis we focus on the Self–modelling time warping (SMTW)
[9], the Pairwise curves synchronisation (PCS) [24] and the Elastic time warping (ETW) [38].
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We observed, that the original algorithm of the SMTW method often results into nondecreasing
instead of increasing estimated warping function when applied to the dataset of healthy sleepers.
Therefore we proposed to add a penalty term to the algorithm to avoid warping functions with
close to zero slope over subintervals of T .

The direct alignment of the whole dataset of the sleep probabilistic curves doesn’t yield to
reasonable results. More specifically, because of many different sleep profiles present in our sleep
curves dataset the PCS method and the both original and modified version of the SMTW algorithm
were not able to align the curves properly (Figures 4b, 4c, 4d). Consequently, the results of the
following cluster analysis were the same as in the case of clustering of original, in time misaligned
curves. The ETW method produced close to ideal alignment of the dataset (Figure 4e), but at the
cost of rapid distortions of the sleep probabilistic curves which consequently led to physiological
misinterpretation of the results. A penalty to the distance between the real and the warping time
in the ETW method led to visually better alignment than by PCS or SMTW, but the typical sleep
profiles were difficult to detect (Figure 4f).

We hypothesised that it wold be reasonable to first divide the curves with similar shapes and
features into homogeneous subgroups and then to register curves in each subgroup separately. In
other words, to apply cluster analysis before the alignment process. But our initial goal was to
align data before the clustering step. This is due to the fact that considering original misaligned
curves may lead to improper assignment into clusters. It looks like we are facing “the chicken and
the egg” problem.

Fortunately, there are also methods which perform curves alignment and clustering simultane-
ously. The k–mean alignment for curve clustering (KMACC) [35] aligns each curve to a set of K
template curves (cluster representatives) and assigns curves into clusters according to their simi-
larity with the template curves. The Joint probabilistic curve clustering and alignment (JPCCA)
[8] is based on a regression model with random effects with the cluster membership represented
by a latent random variable. However, the both methods operate with a linear transformation of
time

h(t) = at+ b, a > 0, b 2 R, t 2 T

when solving the curves misalignment problem. This limits the flexibility of the methods to deal
with situations where a nonlinear transformation of time is needed. In addition, we consider the
same time interval for all sleep curves and therefore the only possible choices for the a and b

constants are a = 1 and b = 0, effectively producing no alignment. Other values of a or b would
annul the property of the common time interval.
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Figure 4: Registration (time alignment) of 146 sleep probabilistic curves representing sleep Mi-
crostate 1 (85% S2). The curves were aligned by three different methods operating on the whole
dataset. In the case of the Self–modelling time warping (SMTW) and Elastic time warping (ETW)
both penalised and non–penalised versions of the algorithms were considered.
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The only algorithm combining the curves alignment and clustering which seems to be appro-
priate for our sleep data is the truncated version of the PCS algorithm (tPCS). In contrast to PCS,
where each pair of curves is aligned separately, the tPCS algorithm aligns a curve only with a set
of the most similar curves. Therefore it can be viewed as an algorithm which takes into account
similarity between curves within the alignment process. However, as we will show later, the results
produced by tPCS were usually not satisfactory.

4.3 2–step approach

To address the problems of the existing methods for combined clustering and registration and also
to introduce an algorithm with a higher flexibility of algorithmic choices in the registration step,
we propose a new 2–step approach. This represents one of the important new contributions of this
PhD thesis.

Let suppose that a set of N curves X1, . . . , XN is observed over a time interval T = [0, 1] and
should be divided into K clusters. First, we would like to introduce a clustering method based on
the Dynamic time warping algorithm (DTW) [40].

The DTW algorithm is a method which was a priori developed and used for aligning curves
with different lengths [26]. Let suppose that two curves Xi, Xj, i 6= j are observed at a finite
number of time-points

xi = {Xi(t1), . . . , Xi(tni), 0 = t1 < · · · < tni = 1},

xj = {Xj(s1), . . . , Xj(snj), 0 = s1 < · · · < snj = 1}.

It is not required that the sets of time-points {tl}
ni
l=1 ⇢ T and {sk}

nj

k=1 ⇢ T are equal.
Similarly to [23] we used the DTW algorithm for constructing a “distance” measure between a

pair of curves
dtw(Xi, Xj) = min

w

X

(km,lm)2w

|Xi(tkm)�Xj(slm)|, (4)

where w = {(km, lm), km 2 {1, . . . , ni}, lm 2 {1, . . . , nj},m = 1, . . . ,WL} is warping path and WL is
the length of w. We use the term “distance” despite the formula (4) does not show the symmetry
property and therefore it is not a real distance. The minimisation is taken under similar constraints
as in the case of the warping function, namely the condition of a common start and end point,
monotonicity, continuity and restriction to the distance between the real time and warping path
w. This optimisation problem can be solved by using the dynamic programming [40].

Then we can construct the DTW based distance matrix Mdtw 2 RN⇥N

(Mdtw)ij = dtw(Xi, Xj), i, j = 1, . . . , N.
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The general idea of the 2–step approach is based on a direct combination of the clustering and
registration steps into an iterative process, more specifically

i) In the first step, an initial clustering is done. Because at this first step the curves are mis-
aligned, the standard k–means [19] or k–medoids algorithms [14] does not lead to reasonable
results. Therefore, in this initial clustering step, we propose to apply the DTW method
with the aim to obtain the distance matrix Mdtw and then to apply the k–medoids clustering
algorithm operating on Mdtw.

ii) In the second step, we align curves separately in each cluster. In practise, one of the above
mentioned three algorithms (SMTW, PCS or ETW) or their penalised versions can be used.
The quality of alignment and clustering is measured by the L–criterion

L =
1

N

KX

i=1

X

j:X?
j 2Ci

Z

T

�
X?

j (t)� µi(t)
�2

dt, (5)

µi(t) =
1

|Ci|

X

j:X?
j 2Ci

X?
j (t), i = 1, . . . , K,

where Ci represents the ith cluster i = 1, . . . , K, µi is its centroid and |Ci| represents its
cardinality. The aligned curves Xj � h?

j , j = 1 . . . , N are denoted by X?
j , j = 1, . . . , N .

iii) The third step consists of re–clustering of the aligned curves using the same clustering ap-
proach as in the step i).

Steps ii) and iii) are the core steps of the 2–step approach for iterative clustering and alignment
and are repeated until one of the following stopping criteria is met

• the number of iterations exceeds a given threshold (in this thesis set to 100),

• the L–criterion is lower than a given small constant,

• clusters in the ith, (i� 1)th and (i� 2)th steps are not changed.

The chosen stopping criteria mimic those used in the standard clustering techniques, for example
[19; 14]. Finally, the cluster membership and registered curves belonging to the iteration step with
the smallest L–criterion are used as the final result.

From a mathematical point of view the 2–step approach represents an heuristic and not a fully
rigorous mathematical method. However, our long–term analysis of the sleep data showed, that
the sleep probabilistic curves are too difficult data for many existing methods with a more complex
mathematical background. These existing methods were outperformed by the proposed approach.
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4.4 Application to the sleep datasets

We applied the proposed 2–step approach to the set of sleep probabilistic curves of healthy sleepers
(second night only) and patients after ischemic stroke and compared its performance with the
tPCS method. Regarding to the 2–step approach we considered its version with the modified
SMTW method (2DTW–SMTW), PCS (2DTW–PCS) and penalised version of the ETW algorithm
(2DTW–ETW) used in the registration step. The k–means clustering of the raw sleep curves is
also considered in this thesis and serves as a reference allowing us to compare the obtained results
with the clustering operating on in time misaligned curves.

The quality of clustering and alignment was evaluated visually, by the L–criterion (5) and
average silhouette (AS) [30]. Silhouette (sil) represents tightness and separation of each cluster. It
reaches values from the interval [�1, 1] and shows whether a curve is well–clustered (sil ⇡ 1), lies
in between clusters (sil ⇡ 0) or is assigned into incorrect cluster (sil ⇡ �1).

Moreover, we aimed to find answer to the question for which sleep microstates the curves
alignment is beneficiary when detecting relationships with daily measures and for which it is on
contrary counter–productive.

4.4.1 Cluster analysis of sleep structure of healthy sleepers

Table 3 shows the L–criterion (5) and the AS values for five chosen sleep microstates clustered by
the k–means algorithm, the tPCS method followed by the k–means algorithm and three versions
of the 2–step approach. The highest AS and the lowest L–criterion values were observed in all
microstates for the 2DTW–SMTW or the 2DTW–ETW algorithm. These results were confirmed
also by the visual inspection of the formed clusters (Figures 5 and 6). From this point of view,
the 2–step approach was able to form more compact and well–separated clusters in comparison to
tPCS or the k–means clustering of original, misaligned curves.

Moreover, we were also interested, whether the 2–step approach helps to improve detection of
relationships between sleep structure and daily measures.

• The relationship between the structure of Microstate 16 (96% SWS) and age or the physio-
logical factor (representing morning and evening systolic and diastolic blood pressure) was
visible for both in time misaligned and aligned curves and for an arbitrary number of clusters
varying between 2 and 20. The clusters with increased probability for the microstate included
mainly younger people with lower values of the physiological factor. On the other hand, the
significant difference in the level of drowsiness between clusters was observed only when con-
sidering the 2DTW–PCS or 2DTW–ETW approach. In this case, increased probability for
the sleep microstate was connected with increased drowsiness.
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Average number k–means tPCS 2DTW– 2DTW– 2DTW–
silhouette of clusters –SMTW –PCS –ETW
Microstate 16 8 0.56 0.57 0.64 0.61 0.47
Microstate 8 9 0.33 0.34 0.48 0.44 0.46
Microstate 14 3 0.53 0.54 0.60 0.10 0.60
Microstate 1 2 0.77 0.79 0.79 0.64 0.80
Microstate 6 3 0.62 0.63 0.73 0.71 0.53

L-criterion number k–means tPCS 2DTW– 2DTW– 2DTW–
of clusters –SMTW –PCS –ETW

Microstate 16 8 0.40 0.39 0.26 0.33 0.19
Microstate 8 9 0.79 0.77 0.54 0.59 0.34
Microstate 14 3 4.55 4.51 2.71 5.01 1.77
Microstate 1 2 4.07 4.05 3.37 4.34 2.84
Microstate 6 3 1.02 1.01 0.78 0.85 0.73

Table 3: The average silhouette and the L–criterion eq. (5) values for methods used to validate
the alignment and clustering performance on 146 probabilistic sleep curves of several microstates.
The optimal number of clusters for each microstate is depicted in the second column.

• After the k–means clustering of sleep probabilistic curves for sleep Microstates 8 (73% REM)
and 14 (72% REM) we detected relationship between increased probability for each of the
microstates and increased diastolic blood pressure. After the curves alignment (2DTW–
SMTW), we also observed that subjects with higher probability values for one of the mi-
crostates felt in the morning less drowsy and they subjectively scored their level of mood,
drive or affectivity better. Moreover, they also showed fewer somatic complaints.

• The clusters of the sleep probabilistic curves for Microstate 1 (85%S2) significantly differed in
the attention variability scored by the Alphabetical cross–out test [11], whether we considered
misaligned curves or the tPCS method. After applying the 2DTW–SMTW algorithm, this
difference remained significant but we detected also significant difference in the percentage
of errors of the test between formed clusters. Higher variability in attention and increased
percentage of errors was related with increased probability for Microstate 1.

The Kruskal–Wallis test detected significant difference in the morning level of affectivity
among clusters of misaligned curves. The 2DTW–SMTW approach formed clusters which
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significantly differed also in the level of mood. We observed that increased probability for
Microstate 1 results into impairment of mood and affectivity in the morning.

• Increased probability of sleep microstates related to wakefulness was observed to be typical
for elderly people (above 60 years of age) whether we considered misaligned or in time aligned
sleep probabilistic curves. Expected relationship between increased wakefulness and worst
subjectively scored sleep quality or level of mood and drive was visible for the microstates
only after the curves alignment.

• Microstate 6 (85% Wake) forms a special part of the sleep structure. In this case the relation-
ship between increased wakefulness and worst subjective feelings after awakening diminished
after the curves alignment. Therefore we hypothesise that in this case the exact occurrence
of periods of increased wakefulness is important when detecting relationships with daily
measures. The same phenomenon was observed also in the case of the Wake stage.

• When considering the sleep probabilistic curves for the standard sleep stages Wake, S1, S2
and SWS, the relationship with age was observed for both misaligned and aligned curves.
However, decreased number of periods of the REM stage with increased age was visible only
in the case of the 2DTW–SMTW approach.

4.4.2 Patients after ischemic stroke

In the second step we applied the 2–step approach to the dataset of patients after stroke. Because
of a smaller number of subjects (24) we considered two to four clusters.

• We observed that increased probability of sleep microstates similar to light sleep helped
to improve performance in the Fine motor activity test. Similar result was observed when
considering the curves representing the S1 stage. On the other hand, increased probability
for the microstate representing the “border” between stages S1 and S2, led to the opposite
results.

• Considering light sleep we also observed that subjects with higher probability values per-
formed better in the LANT test [10], namely in the alerting component (LANT_A). When
considering the standard sleep stages the only relationship with the LANT_A component
was observed for the S2 stage.

• Increased probability for microstates laying at the border between the S2 and SWS stages
led to the improvement in reaction times while the structure of microstates related only to
SWS influenced the reaction speed in a negative way.
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• The subjects with increased SWS during the whole night felt subjectively less drowsy, ex-
hausted or irritated after performing the whole battery of neurocognitive tests. Moreover,
they were able to remember in average more digits in the backward order in the Working
memory test [13].

• Finally we observed that higher probability values for Microstate 19 (86% SWS) are typical
for subjects following more severe stroke according to the National Institutes of Health Stroke
Scale [4].

However, the benefit of the 2–step approach in comparison to the k–means clustering of in time
misaligned curves was not so evident. This may be due to a small number of subjects and clusters.
Considering the S2 or SWS sleep stages and with them associated sleep microstates, the k–means
clustering of misaligned curves produced the same results as the 2DTW–SMTW approach.

In the case of the S1 stage we observed that similarly as in the case of the Wake stage or
Microstate 6 of healthy sleepers, the time alignment seems to be counter–productive. In other
words, the exact occurrence of the periods of light sleep is important when detecting relationships
with the studied daily features. However, we observed the opposite phenomenon in the case of
sleep microstates related to light sleep, where the time alignment helped to detect otherwise hidden
relationships. On the other hand these analysed microstates also show not negligible weights for
the S2 stage.

Overall, we need to stress that due to a small number of patients these observations and
conclusions can be viewed only as preliminary.
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(a) The k–means clustering of misaligned sleep probabilistic curves
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(b) tPCS followed by the k–means clustering

Figure 5: Microstate 16. Clustering of 146 probabilistic sleep curves into 8 clusters by using a)
the k–means algorithm applied to misaligned curves and b) the truncated version of the Pairwise
curve synchronisation algorithm (tPCS) followed by the k–means clustering.
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(a) The 2–step approach with the modified SMTW algorithm (2DTW–SMTW)
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(b) The 2–step approach with the ETW algorithm (2DTW–ETW)

Figure 6: Microstate 16. Clustering of 146 probabilistic sleep curves into 8 clusters by using the
2–step approach with the modified SMTW or ETW algorithm used in the registration step and
k–medoids in the clustering step (2DTW–SMTW, 2DTW–ETW).
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5 Multilevel functional principal component analysis

Multilevel functional principal component analysis (MFPCA) [6] is a dimensionality reduction
technique developed for functional data (curves) with repeated observations for subjects. This
method distinguishes two types of variability – the variability between and within subjects.

Let Xij denotes the jth, j = 1, . . . , J observation for the ith, i = 1, . . . , I subject defined over
the time interval T = [0, 1]. Di et al. [6] assume that each Xij can be decomposed in the following
way

Xij(t) = µ(t) + ⌘j(t) + Zi(t) +Wij(t), i = 1, . . . , I, j = 1, . . . , J. (6)

Here, µ is the overall mean function and ⌘j, j = 1, . . . , J is the observation–specific deviation

from the overall mean satisfying
JX

j=1

⌘j(t) = 0, 8 t 2 T for identifiability. These functions are

considered as fixed effects and their estimators by the method of moments can be found in [6].
Random effects Zi, i = 1, . . . I represent the subject–specific deviation from the observation–

specific mean and Wij is the residual deviation from the subject– and observation–specific profile.
Zi and Wij are considered to be zero–mean stochastic processes defined over a common probability
space (⌦,S,P) with adequately smooth covariance functions RZ : T⇥T ! R and RW : T⇥T ! R.
Moreover, Zi and Wij are uncorrelated for each i = 1, . . . , I and j = 1, . . . , J .

Using the Karhunen–Loewe expansion [12; 20] the random effects can be expressed as

Zi(t) =
1X

k=1

↵ik�
(1)
k (t) and Wij(t) =

1X

k=1

�ijk�
(2)
k (t), i = 1, . . . , I; j = 1, . . . , J.

Here, {�(1)
k }

1

k=1 and {�(2)
k }

1

k=1 are the eigenfunctions of RZ and RW respectively and they are called
the level 1 and level 2 eigenfunctions or functional principal components. Coefficients {↵ik}

1

k=1

and {�ijk}
1

k=1 are random variables with zero mean and

E(↵ik↵il) =

8
<

:
0, if k 6= l,

�(1)
k , if k = l.

E(�ijk�ijl) =

8
<

:
0, if k 6= l,

�(2)
k , if k = l.

We call them the level 1 and level 2 principal component scores. Moreover, {↵ik, k = 1, 2, . . . } are
assumed to be uncorrelated with {�ijl, l = 1, 2, . . . } to mirror uncorrelation between Zi and Wij.

The functional principal components on both levels are estimated as eigenfunctions of the
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covariance function estimators bRZ and bRW

bRT (s, t) =
1

IJ

IX

i=1

JX

j=1

(Xij(s)� bµ(s)� b⌘j(s)) (Xij(t)� bµ(t)� b⌘j(t)) , (7)

bRZ(s, t) =
1

IJ(J � 1)

IX

i=1

JX

j=1

JX

l 6=j

(Xij(s)� bµ(s)� b⌘j(s)) (Xil(t)� bµ(t)� b⌘l(t)) , (8)

bRW (s, t) = bRT (s, t)� bRZ(s, t). (9)

The proposed estimators are asymptotically unbiased estimators of the covariance functions RZ

and RW for I ! 1.
The method for choosing the optimal numbers P1, P2 of functional principal components on the

both levels and estimation of principal component scores is in details described in [6] and therefore
is omitted in the thesis.

5.1 Application to the sleep dataset

In this section we applied the MFPCA algorithm to sleep probabilistic curves representing two
nights of 146 subjects from the SIESTA database [15] in order to detect the effect of night on the
sleep profiles. The second goal was to analyse influence of changes in sleep profiles of subjects
between two nights on changes in daily measures.

First, the night–specific profiles �j(t) = µ(t) + ⌘j(t), j = 1, 2 were estimated for each sleep
microstate or standard sleep stage separately. We observed only negligible difference between the
first and second night–specific profiles within the majority of the sleep microstates. Considering
Microstates 13 (45% Wake, 41% S1) and 19 (88% Wake), for the first night a slightly higher
probability was typical. On the contrary, higher probability values of Microstate 14 (72% REM)
were typical for the second night.

More visible differences between the night–specific profiles were detected for the sleep stages.
When a subject sleeps for the first time in a new environment, his or her sleep is lighter and
problems with falling asleep occur (“the first–night effect”). The probability values for the Wake
stage are higher for the first night in comparison to the second night. On the contrary, for the
second night the sleep probabilistic curves of stages S2, SWS and REM lie higher (Figure 7).

In the second step we computed the coefficient of multiple correlation between difference in a
daily measure and a vector of differences in the level 2 principal component scores representing
changes in the pattern of a given sleep microstate between two nights. The coefficient of multiple
correlations characterises how a single variable can be predicted by a linear combination of other
variables [16].
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Figure 7: Night profiles of sleep stages mimicking the standard R&K staging and estimated by the
MFPCA method. Before applying the MFPCA method the curves were aligned with the modified
Self–modelling time warping method [9] for each subject separately. The overall mean function µ

for each microstate is depicted in blue, red curve represents the first night effect µ+ ⌘1 and green
curve represents the second night effect µ+ ⌘2.

However, the highest obtained correlations between changes in sleep structure and subjective
feelings in the morning (the level of mood, drive, affectivity or drowsiness in the morning, sleep
quality or somatic complaints) were at most 0.26. This indicates only moderate prediction power of
changes in daily measure by changes in sleep structure. This resembles our preliminary studies [32;
29], where we also observed that the prediction of daily measure values with the one–dimensional
characteristics of the sleep structure is a difficult task.

First reason, why we are not able to successfully predict the results of a daily measure by the
characteristics of the sleep structure, is the lack of a deeper information and monitoring of the
other subject’s daily activities or feelings, which can affect the sleep pattern, but have only a slight
influence on the monitored outcomes of the questionnaires or neuropsychological tests.

Second reason can be a presence of a high inter–subject variability or in the other words
subject–based differences in sleep structure [18; 5], which is not adequately taken into account. For
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example, existing sleep structure variation among two or more healthy sleepers may not strongly
influence some of the daily measure results. On contrary, it is a strong variation of the subject’s
sleep pattern from his typical sleep profile which can be manifested by a strong change in his daily
measure outcomes.

We hypothesise that an improvement in correlations between sleep structure and daily measures
can be obtained by modelling a subject’s specific profile present in its sleep probabilistic curves.
The MFPCA method is a candidate for the subject specific profiles extraction. However, a longer,
several nights sleep monitoring would be probably needed to better capture this subject specific
sleep pattern variability.

Large datasets with multiple observations per subject would reflect a common feature – a few
observations for several subjects may be missing either due to the presence of noise or simply due
to the absence of a visit of the subject. We speak about datasets where the number of obser-
vations varies between subjects (unbalanced design) or the order of observations within subjects
is exchangeable (unordered visits). Therefore, we need to ask if it is possible to apply the same
MFPCA algorithm also in these cases?

The answer, in general, is no. We observed, that when the assumptions of the balanced design
and ordered visits in MFPCA are violated, the covariance function estimators (8) and (9) proposed
in [6] are biased and therefore the estimated eigenfunctions are bad representatives for the level 1
and 2 functional principal components.

5.2 MFPCA: case of balanced design and unordered visits

In the case of balanced design and exchangeable order of observations within subjects we observed,
that unbiased covariance function estimators can be obtained by the method of moments and
interchanging the order of estimators; in other words

bRT2(s, t) =
1

IJ

IX

i=1

JX

j=1

(Xij(s)� bµ(s)) (Xij(t)� bµ(t)) ,

bRW2(s, t) =
1

2

1

IJ(J � 1)

IX

i=1

JX

j=1

JX

l 6=j

(Xij(s)�Xil(s)) (Xij(t)�Xil(t)) ,

bRZ2(s, t) =
I

I � 1

✓
bRT (s, t)�

IJ � 1

IJ
bRW2(s, t)

◆
.
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5.3 MFPCA: case of unbalanced design and unordered visits

More general case occurs when the design is unbalanced and the observations within subjects are
unordered. Let consider I subjects with Ji � 1, i = 1, . . . , I visits. In this case we estimated

the overall mean function µ as an unweighted mean bµuw(t) =
1

I

IX

i=1

1

Ji

JiX

j=1

Xij(t) =
1

I

IX

i=1

X i.(t),

because in contrast to the overall mean it puts equal weights to all subjects regardless of their
sample sizes.

In the second step we constructed the estimator bRW so as it minimises

E
⇣
k bRW �RWk

2
⌘
= E

✓Z

T

Z

T

⇣
bRW (s, t)�RW (s, t)

⌘2
ds dt

◆

and has the form

bRW =
1

2

IX

i=1

JiX

j=1

JiX

l 6=j

wi (Xij(s)�Xil(s)) (Xij(t)�Xil(t)) , wi � 0, i = 1, . . . , I

where
IX

i=1

wiJi(Ji � 1) = 1 guarantees the unbiasedness of the estimator.

Under the additional assumption, that Wij is Gaussian process for all i = 1, . . . , I; j = 1, . . . , Ji

it can be proved that

bRWopt =
1

2

IX

i=1

JiX

j=1

JiX

l 6=j

1

(N1 � I)Ji
(Xij(s)�Xil(s)) (Xij(t)�Xil(t)) , N1 =

IX

i=1

Ji, (10)

fulfils all above mentioned conditions. Then

bRT (s, t) =
1

N1

IX

i=1

JiX

j=1

(Xij(s)� bµuw(s)) (Xij(t)� bµuw(t)) ,

bRB(s, t) =
I

I � 1

 
bRT (s, t)�

 
1�

2

N1
+

1

I2

IX

i=1

1

Ji
�

L

N1

I � 2

I

!
bRWopt(s, t)

!
(11)

is unbiased estimator for RB. In (11) L denotes the number of subjects with only one observation.

5.3.1 Application to the sleep dataset

In the thesis we aimed to demonstrated extraction of the subject–specific profiles by the modified
MFPCA algorithm. However, we don’t posses an appropriate sleep database where the number of
subjects’ visits would be greater than two.
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The functionality of our modified MFPCA for unbalanced data can be demonstrated on the
results of the cluster analysis produced by the 2–step approach. Now, each cluster represents a
“subject” and curves assigned into a cluster represent repeated observation for the “subject”.

The sleep probabilistic curves for Microstates 16 (96% SWS) clustered by the 2DTW–SMTW
approach and corresponding cluster–specific profiles estimated by the modified MFPCA method
with the covariance function estimators (11) and (10) are depicted in Figure 8. We would like to
highlight, that the outlier profile of Microstate 16 (cluster 8 in Figure 8) was estimated by the
MFPCA method only with a negligible error.

The cluster–specific profiles estimated by the modified MFPCA method provide an alter-
native way for extracting cluster representatives. In comparison to the point–wise mean esti-

mates, they can by expressed in both, the functional bZi(t) = bµ(t) +
P1X

k=1

b↵ik
b�(1)
k (t) and vector

b↵i = (b↵i1, . . . , b↵iP1)
T forms. However, the curves in a cluster are not represented with a common

one–dimensional characteristics, therefore in the light of the previously used sleep to daily mea-
sures relationship investigation, we are not able to fully validate the benefit of the cluster–specific
profiles extracted by the MFPCA method in comparison to the point–wise mean.

Figure 8: Microstate 16. Cluster analysis of 146 sleep probabilistic curves (grey) assigned into 8
clusters by the 2–step approach with the modified SMTW algorithm in the registration step and
k–medoids in the clustering step (2DTW–SMTW). The cluster–specific profiles were estimated by
the modified MFPCA algorithm (red curves).
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6 Conclusion and Contributions of the thesis

Sleep as a dynamical process enters a finite number of states during night. Understanding its
structure and impact on our daily life behaviour is important not only for medical practice. In this
thesis we offered an alternative view on sleep structure analysis by using the methods of functional
data analysis and probabilistic sleep modelling [17]. We would like to highlight that the analysis
of the sleep structure in the functional data sense is a new approach in the area of sleep research
and we are not aware of any other scientific teams which would consider this approach.

One of the major objectives of the thesis was to identify specific sleep profiles (sleep biomarkers)
which significantly correlate with different physiological, demographic or daily life measures. Our
previous studies [29; 31] showed several promising results. However, the first study did not take
into account the whole dynamic of the sleep process or in [31] we did not consider the problem
of misalignment of the sleep probabilistic curves. Therefore we hypothesised, that important
relationships between the sleep structure and daily measures remained hidden.

In this thesis, for a given sleep microstate, we focused on finding subgroups or clusters of
subjects with similar sleep probabilistic curve profiles and we tested whether there is a significant
difference between results of daily measures among formed clusters. In contrast to [31] we also
analysed the impact of the curves misalignment problem on results and we considered several
methods to solve it.

The second approach is based on the Multilevel functional principal component analysis [6] and
relationship between changes in the sleep structure and changes in daily measures between two
nights of a subject.

The main results and contributions of the thesis are

• We proposed our own approach for iterative combination of the curves alignment and clus-
tering which outperforms i) approaches where the curves alignment applied to the whole
dataset precede the clustering step, and ii) approaches for simultaneous curves alignment
and clustering. The benefit of our 2–step approach is also a higher flexibility of algorithmic
choices in the registration step.

• The algorithm of the Self–modelling time warping method [9] does not guarantee, that the
estimated warping function is strictly increasing which is in conflict with the basic assumption
of the curves alignment. Therefore we considered a penalty term in the method which avoids
an estimate of a non–decreasing warping function and also restricts the distance between real
time and warping function.
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• We showed, that the curves alignment plays important role in the analysis of the sleep
structure. This is especially true for the S2, SWS, REM sleep stages and related sleep
microstates. On the other hand, in the case of the Wake stage and several related sleep
microstates, the exact occurrence of the periods of wakefulness during the night is important
when detecting relationships with daily measures.

• Using the 2–step approach we detected new relationships between sleep structure and daily
measures which were not observed in the case of in time misaligned sleep probabilistic curves.

• The Multilevel functional principal component analysis (MFPCA) [6] is a method a priori
developed for the detection of variability in functional data with repeated measurements.
After applying the MFPCA method to the dataset of healthy sleepers we detected the “first–
night sleep effect” considering several sleep microstates and all standard sleep stages.

• Similarly as in [7; 32; 33] we observed that the prediction of daily measures by using cha-
racteristics of the sleep structure is a difficult task. We investigated a prediction power of
the linear regression model with independent variables being the differences in the level 2
principal component scores and dependent variables being the differences in a daily measure.
Then, the coefficient of multiple correlation validates the performance of the model. How-
ever, the observed correlations were at most 0.26 indicating only a moderate relationship
between the changes in the sleep structure and changes in the values of a daily measure. We
hypothesise that these weak correlations are mainly influenced by the individuality in the
subjects’ sleep profiles.

• We adapted the MFPCA algorithm for the case when the order of observations within sub-
jects is exchangeable or when the number of observations varies within subjects (unbalanced
design). We took into account also a special case of the unbalanced design when for several
subjects only one observation is available. We wrote a user–friendly MATLAB [22] script for
the implementation of the modified MFPCA algorithm.

• We assume that the original or the modified version of the MFPCA algorithm can be suc-
cessfully used for the detection of subject–specific profiles in sleep dataset with repeated
measurements.

Finally, we can conclude, that functional data analysis is a promising tool for sleep structure
analysis. One of its major benefits stands from the possibility to take into account the whole
overnight sleep dynamics, which can be partially lost when considering one–dimensional sleep
characteristics; being the common practice in the other existing sleep studies. To overcome and
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solve the discussed important problem associated with individuality of the sleep profiles, a larger
database consisting of several nights sleep recordings for each subject is needed.
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