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Abstrakt

Náhla cievna mozgová príhoda (mŕtvica) je jednou z najvážnejších príčin ťažkej dlhodobej invalidity.

Cieľom rehabilitácie pacientov po prekonaní cievnej mozgovej príhody s postihnutím končatín je vyvolať

neurologické zmeny vedúce k samostatnej pohybovej aktivite využitím neuroplasticity mozgu. Technoló-

gia roboticky-asistovaného rozhrania mozgu s počítačom (BCI) využívajúca pacientovu predstavu pohybu

(MI) a elektroencefalografiu (EEG) sa stáva jedným z nástrojov pre rehabilitáciu po cievnej mozgovej

príhode, ktorý poskytuje sľubné klinické výsledky. V tejto dizertačnej práci sme skúmali zmeny neurálnej

aktivity motorických oblastí mozgu využitím EEG signálov, ktoré boli vyvolané počas rehabilitačných

tréningov pacienta využívajúcich roboticky-asistované MIBCI. Pre hlbšie pochopenie neurálnych mech-

anizmov, ktoré sú základom funkčnej obnovy motorických funkcií po poškodení mozgu, v prvom kroku

hodnotíme predpokladané neuroplastické zmeny v EEG senzomotorických rytmoch pacienta po preko-

naní cievnej mozgovej príhody počas dvoch rokov motorického tréningu pomocou roboticky asistovaného

MIBCI. Následne skúmame dynamickú moduláciu oscilačných senzomotorických EEG rytmov, keď si

pacient so zatvorenými aj otvorenými očami predstavoval ovládanie externého robotického zariadenia

pohybom postihnutej ruky. Aby sme využili informačnú hodnotu nameraných vysokorozmerných dát

na vyhodnotenie zmien indukovaných v motorickej kôre počas celého zákroku, používame paralelnú fak-

torovú analýzu (PARAFAC) na identifikáciu špecifických priestorových a spektrálnych charakteristík nam-

eraných EEG signálov. Súbor lateralizovaných úzkopásmových senzomotorických rytmov špecifických pre

konkrétneho pacienta identifikujeme analýzou dominantných priestorových a spektrálnych váh PARAFAC

v oscilačnej časti spektra EEG signálov. Zistili sme, že MIBCI-asistovanou rehabilitáciou boli vyvolané dl-

hotrvajúce zmeny v elektrickej aktivite mozgu pacienta. Tieto zmeny súviseli najmä s dlhodobým zvýšením

výkonu pomalých (∼ 7.5 až ∼ 8.75Hz) a znížením výkonu rýchlejších senzomotorických rytmov, čo naz-

načuje ich odlišné, ale komplementárne úlohy pri obnove motorických funkcií. Naše výsledky ďalej ukázali,

že oscilačná dynamika tých senzomotorických rytmov, ktorých frekvencie sú centrované na 8.0Hz a 11.5Hz

bola rozdielne modulovaná v závislosti od toho, či mali pacienti počas experimentov oči otvorené alebo

zatvorené. Tiež hodnotíme namerané EEG signály dvoch ďalších pacientov po prekonaní cievnej moz-

govej príhody, ktorí sa zúčastnili niekoľkých rehabilitačných sedení. Tu ukazujeme, že tenzorová analýza

senzorimotorických EEG rytmov je obzvlášť vhodná na detekciu úzkopásmových aktivít motorickej kôry

a poskytuje kvantitatívne informácie o osciláciách neurálnych signálov ľudského motorického systému.

Výsledky tohto výskumu prispievajvú k lepšiemu pochopeniu neurálnej plasticity indukovanej dlhodobým

motorickým tréningom, ako aj k charakterizácii modulačnej dynamiky ovplyvnenej stavom ľudského oka.
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Introduction

Rehabilitative technologies based on brain-computer interface (BCI) show promising clinical results in

the functional recovery of post-stroke patients. However, a better understanding of the effects of using

BCI on sensorimotor repair mechanisms by measuring and analyzing electrophysiological signals is still

needed. EEG based motor imagery BCI (MIBCI) systems have emerged as a cost-effective and non-invasive

technique because of their accurate temporal resolution and their feasibility in clinical environments [Buch

et al., 2008; Ang et al., 2011; Chaudhary et al., 2016; Monge-Pereira et al., 2017]. The high dimensionality

of BCI-EEG data, especially in a longitudinal motor-training paradigm, is a real challenge for the analysis.

Most signal processing frameworks investigating BCI training effects on neural modulations are uni-

variate. It means that each electrode is considered as an independent source of brain activity. However,

due to the volume conduction effect [Nunez et al., 2006], multiple sources of neural activity from different

brain regions contribute to the signal recorded at each electrode. While, we here hypothesis that due to

neuroplasticity characteristic that enables reorganization of neural pathways in the brain [Murphy and

Corbett, 2009], specific brain networks can be activated after each MIBCI training session [Ang et al.,

2011; Monge-Pereira et al., 2017]. These networks not only have a specific spatial distribution (laterally

distributed over the sensorimotor cortex [Toga and Thompson, 2003; Kapreli et al., 2006]) but also have

specific spectral signatures differ based on cortical locations [Donoghue et al., 2021], however, other fac-

tors such as experimental conditions, recording time (different days), and tasks could not be neglected

[Watrous and Buchanan, 2020]. For such highly multidimensional data, standard matrix factorization

methods might fail to represent a rich and informative representation of the data [Cichocki et al., 2008].

Therefore, analytical approaches based on tensor decomposition that encompass these additional dimen-

sions or modes to provide a more natural and informative representations of the original multidimensional

data structure should take higher priority.

In signal processing, the term tensor refers to an N -way or (multidimensional) array characterized

by more than two modes. Large-scale vectors (a one-way array) or matrices (a two-way array) can be

represented by higher-order tensors and compressed through tensor decomposition methods into a set

of unique multiple components with distinct modalities if they follow a low-rank tensor approximation

[Cichocki et al., 2015]. The Parallel Factor Analysis (PARAFAC) [Harshman, 1970; Bro et al., 1997] and

the Tucker model [Tucker, 1966] are the two most promising methods for an N -order tensor decomposition.

These methods are a generalization of the standard two-way matrix factorization methods such as Discrete

Fourier transform (DFT) or principal/independent component analysis (PCA/ICA) by imposing some

constraints such as orthogonality, non-negativity, or sparsity of hidden factors [Cichocki et al., 2008].

Although some research has examined the applicability of tensor decomposition methods on properly

modeling real and simulated EEG data [Cong et al., 2015; Tangwiriyasakul et al., 2019; Rosipal et al.,

2022], the use of these approaches in the BCI domain is gradually developing in recent years. [Liu et al.,

2014; Rošťáková et al., 2020b,a].
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This thesis aims to evaluate the application potential of advanced numerical methods and algorithms

for the quantitative analysis of EEG signals by reducing the dimensionality and revealing the main profiles

underlying brain network modulations during after-stroke rehabilitation. To this end, we decompose

the multi-channel time-varying EEG signals, recorded over a longitudinal course of MI training using a

robotic-assisted MIBCI, into temporal (indicating the motor network activation/deactivation in a given

time), spatial (indicating the spatial distribution of the brain networks underlying MI), and spectral

(indicating the frequency contents of neural oscillations in the motor-related networks) components with

distinct modalities to contribute to a deeper understanding of neural modulations in the sensorimotor

brain rhythms following rehabilitation.

1 Goals of the dissertation thesis

Two main specific objectives of the thesis are as follow:

• The first objective of this thesis is to measure and evaluate longitudinal neuroplastic changes in the

sensorimotor brain rhythms following rehabilitation. Here, we attempt to show how longitudinal

motor training using a robotic-assisted MIBCI can induce short- and long-term effects in the brain’s

electrical activity in the motor cortex. To the best of our knowledge, this is the first study evaluating

the longitudinal short-term (day-to-day) and long-term (over the intervention period) changes in

cortical brain activation induced by utilizing an external robotic device triggered by MI of the

affected hand and the multiway tensor decomposition concept. In particular, this expands on the

study of Rosipal et al. [2019] in which the mirror-box therapy effects on modulation of sensorimotor

EEG oscillator rhythms were investigated by proposing a tensor-based approach.

• The second objective of this thesis is to investigate the applicability of a novel analytical framework

based on tensor decomposition to precisely measure the underlying dynamics reflecting visual in-

formation. We hypothesize the proposed method can contribute to a deeper understanding of the

neural mechanism of different eyes conditions (EO vs EC) induced by MIBCI. To the best of our

knowledge, however, no prior study has investigated the effect of the open or closed eyes conditions

on sensorimotor modulations during MIBCI on stroke patients, while only a few previously pub-

lished studies are limited to healthy subjects. Part of the aim of this thesis is to further expand

on the influence of the eyes-closed condition on the motor cortex, particularly during MI, which

received only scant attention in the BCI literature.

2 Material and methods

It should be stressed that the raw data used in this study come from the already existing dataset collected

at the Institute of Measurement Science of Slovak Academy of Sciences (UMSAV). The experiment’s

2



paradigm for evaluating the thesis’ central question is provided in the first part of this chapter. Theoretical

and analytical methods for EEG processing measured during each rehabilitation session are next discussed.

2.1 Participants

A 58-year-old post-stroke male subject who had right-hand hemiplegia due to an is chemic stroke that

occurred to him 2 years before participating in this study and affected his left frontotemporal to parietal

areas was participated in this study. In addition to the main above-mentioned subject (Patient 1), two

other stroke patients with right-hand hemiplegia who had participated in a limited number of rehabilitation

training sessions including eight and nine motor training sessions respectively. Subject 2 was a 51-year-old

male with right-sided mild hemiparesis that entered this study after two months of an ischemic stroke.

Subject 3 was a 45-year-old male with right-sided severe hemiparesis that entered this study after 14

months of an ischemic stroke.

2.2 Experimental procedure

During the experiment, participants were seated in a comfortable chair armrest while their left arms were

rested and their right arms were fixed to the robotic splint. Each training session started and ended with

two minutes of the resting-state block EEG recordings with closed eyes (REC) condition followed by two

minutes with opened eyes (REO). The patient fixated his eyes on a small cross on the wall to control eye

movement artefacts during the REO condition. The core of each neurorehabilitation session consisted of

training with robotic-assisted MIBCI, during which Patient 1 attempted to control the robotic device by

MI of his affected hand. The patient was asked to keep his eyes closed (MIEC) and open (MIEO) while

performing the MI task resulting in 10 trials for each MI condition (see Figure 1). While, for Subject 2

and Subject 3, three rehabilitation sessions were scheduled, resulting in 24 and 27 rehabilitation sessions

conducted in eight and nine training days, respectively. They also performed the MI task when their eyes

were closed, resulting in 30 MIEC trials for each session. The stroke patients had two training days per

week in average and each training day lasted an hour approximately.
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Figure 1: Diagram of each rehabilitation session using robotic-assisted MIBCI. The session started
with two minutes resting-state EEG recordings with eyes closed (REC, purple) and eyes open
(REO, green) followed by 20 trials of performing MI of the affected hand with eyes-closed (MIEC)
and eyes-open (MIEO). A cue sound indicated when the subject had to start the MI (Move Cmd)
and relax (Relax Cmd). These parts separated by implicit transition periods (Pause) as buffer
zones. The session was ended with the same REC and REO recording blocks as before the MI
part.

2.3 EEG data acquisition

EEG signal was continuously recorded by a trained technician using active Ag/AgCl electrodes embedded

in an elastic fabric cap (g.GAMMAcap; g.tec medical engineering, Schiedlberg, Austria). The 10 EEG

electrodes were placed around the motor cortex according to the extended 10–20 EEG system. Two

electrodes covered the left and right primary motor cortex (C3 and C4) with four electrodes around them

(FC3/C1/C5/CP3 and FC4/C2/C6/CP4) . One additional electrode was placed at O1 to record posterior

Alpha oscillations. The reference and ground electrodes were attached to the left and right ear lobes (A1

and A2) and AFz, respectively (Figure 2, right panel).

2.4 Data preprocessing

At the first step, EEG signals were down-sampled to 128Hz, and, and an automatic artifact detection with

the following criteria was applied. The maximally allowed voltage was set to 50µV/ms, and the lowest

allowed activity in intervals of 100ms was fixed to 0.5µV. The maximally allowed difference of voltages in

intervals of 20ms was considered to 50µV. If any of the first two criteria was met, the interval preceding

and following the detected artifact by 150ms was marked as bad. In the case of the third criterion, this

interval was set to 50ms. Next, a trained technician manually marked periods with undetected artifacts,

and removed artifact markers that the software wrongly identified. This step also included the detection

and removal of ocular artifacts. The preprocessing step was performed using BrainVision Analyzer 2

software (BVA2; BrainProducts GmBH, Gilching, Germany).
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2.5 Spectral analysis

For the tensor based analysis, the clean multi-channel EEG data including MI training (MIEC &MIEO) as

well as task free pre- and post-training resting state data (REC & REO), were segmented into two-second

sliding windows with an overlap of 500ms. But for analyzing the longitudinal changes in oscillatory EEG

rhythms, four-second sliding windows with an overlap of 500ms was considered (only for pre- and post-

training resting state data). Then, the irregular-resampling auto-spectral analysis (IRASA) [Wen and Liu,

2016] method was applied to each time window from each single electrode to obtain the raw signal spectrum

and its periodic (oscillatory) and aperiodic (non-oscillatory) parts (see Figure 2). In order to truly measure

the localized rhythmic activity within a narrow-band frequency range (i.e. oscillatory sources present as

narrow-band peaks of power above the aperiodic component), we focused on the oscillatory components

only.
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Figure 2: (left panel) The irregular-resampling auto-spectral analysis (IRASA) method was em-
ployed to extract the periodic (green) activities from the raw power spectra of EEG data (blue)
recorded at the left (C3 electrode) and right (C4 electrode) motor cortex during the REC condi-
tion after training by robotic-assisted MIBCI. The 1/f aperiodic modulations are indicated in red.
For visualization purposes, frequencies were restricted to the 0–25Hz range. (right panel) EEG
electrodes (red) were placed around the motor cortex. The reference (green) and ground (blue)
electrodes are also indicated. The original image configuration comes from Seeck et al. [2017].

2.6 Tensor decomposition

With the aim to identify a set of narrow-band motor-related EEG rhythms, the collected EEG data were

modelled by PARAFAC. The logarithmically transformed oscillatory components obtained by IRASA were

arranged into a three-dimensional tensor X ∈ RI×J×K (time × electrode × frequency) where I, J , and K
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represent the number of two-seconds long epochs, the number of electrodes (J = 10; the O1 electrode was

excluded), and the number of selected frequencies (K = 43; 4 to 25Hz with a 0.5Hz step), respectively.

The tensor X was centered across the first mode:

X?
ijk = Xijk −

1

I

I∑
i=1

Xijk

i = 1, ..., I; j = 1, ..., J ; k = 1, ...,K.

(1)

The tensor was separately constructed and analyzed for each MIEC and MIEO conditions as well as each

training day.

2.6.1 PARAFAC model

A three-way PARAFAC model decomposes the tensor X ∈ RI×J×K into three factor matrices A ∈ RI×F ,

B ∈ RJ×F , C ∈ RK×F , and a core tensor G ∈ RF×F×F . The core tensor G is a super-diagonal tensor in

which all elements are zero except those on the super-diagonal.

X?
ijk =

F∑
f=1

gfff aif bjf ckf + eijk

i = 1, ..., I; j = 1, ..., J ; k = 1, ...,K.

(2)

where Xijk are elements of X, and F is the number of factors that we called atoms throughout this paper.

The factor matrices are then obtained by minimizing the sum of squared residuals.

I∑
i=1

J∑
j=1

K∑
k=i

(
X?

ijk −
F∑

f=1

gfff aif bjf ckf

)2

(3)

under the constraints:

∥∥af∥∥2 = I∑
i=1

a2if = 1,
∥∥bf∥∥2 = J∑

j=1

b2jf = 1

∥∥cf∥∥2 = K∑
k=1

c2kf = 1, f = 1, ..., F.

(4)

The A, B, and C factor matrices represent time signatures (or time scores), spatial signatures and fre-

quency signatures, respectively (see Figure 3). They have the same number of columns equal to the number

of factors (F ). The tensor E = (eijk) ∈ RI×J×K shows the error term of the model. The number of fac-

tors in our PARAFAC models varied between six to 20. Then, a cluster analysis was applied to all the

extracted atoms from all models Rošťáková et al. [2020b]. Following our previous studies Rosipal et al.

6



[2019]; Rošťáková et al. [2020b], we imposed the non-negativity constraint on the matrices A, B, and C

to improve the neurophysiological interpretation of the results. Moreover, we considered the unimodal-

ity constraint on the matrix C to specifically focus on the localized oscillatory components in the EEG

spectrum surrounding a true peak.

Figure 3: A graphical representation of the PARAFAC model. The original figure comes from
[Rošťáková et al., 2020b].

2.7 Time-frequency analysis

To further validate the result obtained by atom-specific time-score averaging and investigate the influence of

the MIEC condition on the motor cortex during MI of the affected hand, we computed and visualized event-

related changes by calculating time-frequency representations of power. To assess event-related dynamics

of the EEG spectrum evoked by the MI onset, we the event-related spectral perturbation (ERSP) analysis.

In other words, ERSP allows to visualize event-related changes in the average power spectrum relative to

a baseline interval [Grandchamp and Delorme, 2011]. Each data segment was multiplied with a Hanning

window and spectral power was estimated using a 256 point sliding Morlet wavelets over a frequency range

from 1.5 to 22Hz with a resolution of 0.25Hz [Delorme and Makeig, 2004]. The maximum frequency to

plot was selected in accordance with the identified narrow-band oscillatory atoms. The minimum number

of the Morlet wavelets cycles for the time-frequency analysis was set to 3 that increased linearly with an

frequency step size of 0.15 (until the indicated maximum frequency). All power spectra were baseline

corrected based on power spectral average in a two-seconds pre-stimulus interval for each frequency band.

ERSP was calculated on the C3 and C4 electrodes representing the left and right sensorimotor cortices

over the scalp.
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3 Detection of subject-specific oscillatory atoms

3.1 Oscillatory rhythms underlying MIEC

The PARAFAC model detected general peak frequencies of oscillatory atoms in the Mu (7.5–8.75Hz),

alpha (9–11Hz), SMR1 (11–13Hz), SMR2 (13–15Hz), Beta 1 (15–17Hz), Beta 2 (17–19Hz), and Beta 3

(19–21Hz) frequency ranges. As shown in Figure 4, the PARAFAC model detected seven subject-specific

narrow-band oscillatory rhythms. The central peak frequencies of the extracted PARAFAC atoms were

at around 8.0, 9.5, 11.5, 14.0, 15.5, 17.5, and 19.5Hz (forth row) for all subjects. These oscillatory EEG

sources are located in the left or right hemisphere, as indicated by spatial signatures (third row) and scalp

topography maps (first and second rows). The blue and red curves indicate PARAFAC general atoms for

the affected and unaffected cortices, respectively.
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Figure 4: Subjet 1. The general PARAFAC spatial (third row) and frequency (fourth row) atoms
obtained from multi-channel EEG recorded during MIEC. The weights were averaged over all
available training days. The blue and red colors indicate the lateralized spatial distribution of
the oscillatory EEG activities in the affected (left) and unaffected (right) hemispheres over the
sensorimotor cortex. The scalp topography maps correspond to the general spatial atoms of the
left (first row) and right (second row) hemispheres.
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3.2 Oscillatory rhythms underlying MIEO

The result of PARAFAC decomposition during MIEO is presented in Figure 5. As expected, the PARAFAC

model detected the same frequency signatures for MIEO as during the MIEC condition (see Figure 4).

From Figure 5, as our expectation, we can see the PARAFAC model detected the same frequency signatures

for movement imagery with open-eyes as the closed-eye condition. The only difference was found in the

Beta 3 band, in which the central peak frequency was slightly different and located at 19Hz. This shift

can be because of the PARAFAC numerical issues.
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Figure 5: Subject 1. The general PARAFAC spatial (third row) and frequency (fourth row) atoms
obtained from multi-channel EEG signal recorded during MIEO. The weights were averaged over
all available training days. The blue and red colors indicate the lateralized spatial distribution
of the oscillatory EEG activities in the affected (left) and unaffected (right) hemispheres over the
sensorimotor cortex. The corresponding scalp topography maps of the identified spatial atoms
over the left (first row) and right (second row) hemispheres are illustrated.

3.3 Between subjects stability of PARAFAC atoms

The PARAFAC model detected seven motor-related frequency signatures with highly stable peak frequen-

cies among all subjects during rehabilitation training using MIBCI. This global stability is also clear over

both affected (6; first row) and unaffected (7; first row) hemispheres. Furthermore, similarly to frequency

signatures, spatial signatures represent the location of these motor-related oscillatory EEG sources either

in the affected (6; second row) or unaffected (7; second row) hemisphere showing a high stability among

all subjects.
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Figure 6: An example of highly stable general frequency (top) and spatial (bottom) PARAFAC
atoms for Subject 1 (blue), Subject 2 (red), and Subject 3 (green) over the affected (left) cortex
during MIEC.

F
C

3

C
1

C
3

C
5

C
P

3
F

C
4

C
2

C
4

C
6

C
P

4

0

0.2

0.4

0.6

0.8

1

W
ei

gh
ts

Mu

F
C

3

C
1

C
3

C
5

C
P

3
F

C
4

C
2

C
4

C
6

C
P

4

Alpha

F
C

3

C
1

C
3

C
5

C
P

3
F

C
4

C
2

C
4

C
6

C
P

4

SMR 1

F
C

3

C
1

C
3

C
5

C
P

3
F

C
4

C
2

C
4

C
6

C
P

4

SMR 2

F
C

3

C
1

C
3

C
5

C
P

3
F

C
4

C
2

C
4

C
6

C
P

4

Beta 1

F
C

3

C
1

C
3

C
5

C
P

3
F

C
4

C
2

C
4

C
6

C
P

4

Beta 2

F
C

3

C
1

C
3

C
5

C
P

3
F

C
4

C
2

C
4

C
6

C
P

4

Beta 3

5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

Frequency (Hz)

W
ei

gh
ts

5 10 15 20 25

Frequency (Hz)
5 10 15 20 25

Frequency (Hz)
5 10 15 20 25

Frequency (Hz)
5 10 15 20 25

Frequency (Hz)
5 10 15 20 25

Frequency (Hz)
5 10 15 20 25

Frequency (Hz)

Figure 7: An example of highly stable general frequency (top) and spatial (bottom) PARAFAC
atoms for Subject 1 (blue), Subject 2 (red), and Subject 3 (green) over the unaffected (right) cortex
during MIEC.

3.4 Generating atom-specific PARAFAC time scores

For generating time scores, the PARAFAC weights of spatial and spectral atoms from all available training

days and from each MIEC and MIEO conditions were firstly averaged together to obtain general atom

weights. Then, for time score analysis reported in section 4, we projected the general atoms to the

corresponding resting state (REC and REO) periodic EEG spectrum, estimated for two-second sliding

windows with an overlap of 500ms, of each training day. Similarly, for analysis reported in sections 5

and 6, the general spatial and spectral atoms were projected to the periodic EEG spectrum during MI

estimated for two-seconds long overlapping segments with a sliding step size of 7.8125 ms (i.e. one data
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point shift). In atom specific time scores, the spatial information obtained from all electrodes used in

tensor construction and the spectral information of a given atom is embedded. It means that we have a

discrete time score for a given frequency signature and each spatial lateralization (see Figure 8). In other

words, the projection resulted in generating a numerical sequence called time score (TS), in which each

value of the time score represents the presence of a specific atom (in the EEG spectrum) and space at a

given time.
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Figure 8: An example of Mu (8Hz) PARAFAC time scores over the affected (top) and unaffected
(bottom) hemispheres of Subject 1 in the pre- (blue) and post-training (red) during the REC condi-
tion. Each sample of time scores is a projection of general spatial and frequency weights obtained
by the PARAFAC model onto a two-seconds artefact-free EEG epoch. The data were selected
randomly from available training days and rescaled between 0 and 1 for better visualization.

4 Longitudinal analysis of neuroplastic changes in the senso-

rimotor rhythms following BCI rehabilitation

4.1 Longitudinal analysis of short-term MIBCI effects

In the REC condition, the Mu (p < .001), Alpha (p = .004), SMR1 (p < .001), and SMR2 (p = .005)

PARAFAC average time scores of the affected (left) sensorimotor region increased significantly as a result

of MIBCI training. Figures 9 (A) and 9 (C) present the day to day pre- and post-training changes obtained

from time score analysis of Mu and SMR1 over the affected cortex. By contrast, the mean PARAFAC time
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scores in the different ranges of Beta, except Beta 3 (p = .287), showed significant post-training decreases

(Beta 1; p = .023, Beta 2; p < .001). These results contrast with those obtained by the REO condition.

The differences between pre- and post-training of PARAFAC time scores of the major identified frequency

atoms were insignificant, except Mu and Alpha. For the REO condition, we observed a significant increase

in Mu (p = .001) and Alpha (p < .001) time scores due to rehabilitation training, which is consistent with

the results of the REC condition.
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Figure 9: The mean values of Mu (A, B) and SMR1 (C, D) PARAFAC time score changes over
the affected (left panel) and unaffected (right panel) hemispheres between two resting periods,
before (blue) and after (red) training during the REC condition. Each time score value represents
an average computed for a training day using MIBCI coupled to a robotic device. The lateralized
sensorimotor atoms were identified during the REC condition. Significant increases at the p = 0.05

level in Mu and SMR1 time scores are indicated. Significant increases in Mu and SMR1 time scores
are indicated over the affected (left panel) and unaffected (right panel) hemispheres.

On the contrary to the left sensorimotor region, no significant post-training changes in the Mu, Alpha,
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and Beta 1 PARAFAC time scores were found over the right hemisphere for the REC condition (all p’s

> .174). Similar to the affected hemisphere, post-training significant increases in SMR1 (p < .001) and

SMR2 (p < .001) and decreases in Beta 2 (p < .001) and Beta 3 (p < .001) PARAFAC time scores were

observed in the right hemisphere. Figures 9 (B) and 9 (D) show the day to day pre- and post-training

changes obtained from time score analysis of Mu and SMR1 over the unaffected cortex. For the REO

condition, we detected no significant differences between the pre- and post-training PARAFAC average

time scores in Mu, SMR1, and Beta 2 (all p’s > .417). While, Alpha (p < .001), SMR2 (p < .001),

and Beta 1 (p < .001) time score were significantly increased from pre- to post-training following the

intervention.

4.2 Longitudinal analysis of long-term MIBCI effects

We found substantial increases in PARAFAC pre-training time scores of Mu (p = .037) and Beta 3 (p =

.041) atoms during the period of intervention in the REC condition. By contrast, there was a significant

reduction in SMR1 pre-training time scores (p = .029). Figure 10 (A and C) shows the long-term Mu and

SMR1 time score (over the affected cortex) changes throughout the intervention period. The difference

between mean time score values of the post- and pre-training blocks of Mu showed a significant decrease

for the REC condition throughout the training days (p = .011). The there were no significant long-term

trends for the post- and pre-training block differences of other major rhythms (all p’s > .23). In the REO

condition, except trend-level decreases in SMR2 (p = .059) and Beta 3 (p = .070) atoms, no pre-training

effect was observed for other atoms throughout the training days (all p’s > .27). None of the post-training

(all p’s > .11) time scores of motor-related atoms was also statistically changed during the intervention

period. However, the difference between the post- and pre-training time scores indicated significant and

trend-level significant increases for Alpha (p = .043) and Beta 1 (p = .063), respectively.

In the REC condition, pre-training Mu (p < .001) and SMR1 (p < .001) time scores within the

right sensorimotor cortex showed remarkable long-term increasing and decreasing patterns over time,

respectively. Moreover, except for SMR1 (p = .041; Figure 10 B and D) and Beta 2 (p = .030) rhythms,

none of the post-training time scores was statistically associated with the training period. Figure 10 (B

and D) shows the long-term longitudinal Mu and SMR1 time scores (over the unaffected cortex) changes

during the training days. Furthermore, the post- and pre-training difference in REC time scores notably

decreased in Mu (p = .016) and increased in SMR2 (p = .030) atoms. while other motor-related time

scores remained statistically stable throughout the training sessions (all p’s > .077). The pre-training

time scores were not associated with intervention time (all p’s > .08) in the REO condition. In contrast,

a strong increase in post-training time scores occurred for Mu (p < .001) rhythm. The longitudinal post-

training time-scores changes remained insignificant for other atoms (all p’s > .079). Marginally significant

increases of the post- and pre-training difference associated with the rehabilitation period were only found

in the SMR2 (p = .047) and Beta 1 (p = .057) atoms, not in other atoms (all p’s > .10).
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Figure 10: Association of longitudinal Mu (A&B) and SMR1 (C&D) PARAFAC time scores
changes in the pre-training block (first row), post-training block (second row), and the post- and
pre-training differences (third row) with the intervention time. The sensorimotor atoms were
identified during the REC condition over the affected (A&C) and unaffected (B&D) hemispheres.
Each time score value represents an average computed for a training day using MIBCI coupled to
a robotic device. The red lines represent a robust linear regression model fitted to data.
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5 Dynamics of sensorimotor modulations underlying MI with

eyes closed

5.1 Dynamic characteristics of MIEC during movement initiation

The PARAFAC time scores of each identified narrow-band EEG oscillatory rhythm was segmented into

7-second epochs, containing 2 sec before stimulus onset (Move Command) as a baseline to 5 sec after it

(see Figure 1). Then, all trials obtained through all rehabilitation sessions for each patient were averaged

to smooth the data and reduce the variability, leading to the enhancement of the signal-to-noise ratio.

The possible similarities or dissimilarities of the time-locked temporal dynamics with the standard time-

frequency analysis, known ERSP, were further explored using the raw EEG signals recorded over C3 and

C4 electrodes corresponding to the contralateral and ipsilateral motor areas. The temporal dynamics

of baseline-corrected time score changes in each identified narrow-band EEG oscillatory rhythms were

calculated individually during MIEC. Baseline-correction means using data over a baseline period, i.e.

before stimulus onset (Move Command), to correct data over a post-stimulus interval, i.e. after stimulus

onset (Move Command). Here, we used the z-score method for baseline-corrected time score analysis

[Grandchamp and Delorme, 2011].

For Subject 1 (Figure 11; top), the Mu and Beta 1 rhythms dynamics closely matched, especially on

the right hemisphere ipsilateral to the imagined hand movements with a strong desynchronization started

1 sec after the MI. The dynamics of both ipsilateral and contralateral sensorimotor cortices presented a

similar synchronization in SMR1 rhythm reached their maximum after 2.5 seconds after the MI. Moreover,

the dynamics of ipsilateral and contralateral sensorimotor cortices in SMR2 and Beta 3 rhythms showed

an inverse relation with respect to MI, so that, in SMR2 (Beta 3) rhythm, a strong synchronization

over the contralateral (ipsilateral) sensorimotor cortex was associated with a subtle desynchronization

over the ipsilateral (contralateral) sensorimotor cortex. An ipsilateral Alpha synchronization was found

2 second after starting MI, which was absent in the contralateral cortex. Again, an ipsilateral Beta 2

desynchronization was also identified 1.5 second after starting MI, which was missing in the contralateral

cortex.
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Figure 11: Subject 1. (top) Temporal dynamics of the baseline-corrected modulations of the iden-
tified narrow-band EEG rhythms during the MIEC in the affected (blue) and unaffected (red)
sensorimotor cortices time-locked to the start of the motor imagery process. The dashed lines
show the level of significance at 1%. (bottom) The corresponding ERSP plot to further validate
the time score results were calculated for C3 (left) and C4 (right) EEG electrode sites. The
pink lines indicate the subject-specific frequency peaks at 8.0Hz (Mu), 9.5Hz (Alpha), 11.5Hz
(SMR1), 14.0Hz (SMR2), 15.5Hz (Beta 1), 17.5Hz (Beta 2), and 19.5Hz (Beta 3) identified by
tree-way PARAFAC model.

In summary, it can be concluded that Alpha, SMR2, Beta 2, and Beta 3 rhythms over the ipsilateral

cortex had different baseline-corrected temporal dynamic patterns compared to the contralateral cortex.

The observed results are further supported by comparing the ERSP plot of C3 and C4 electrodes with

those contralateral and ipsilateral time-locked temporal dynamics (Figure 11; bottom).

5.2 Dynamic characteristics of MIEC during movement completion

In this condition, the PARAFAC time scores of each identified narrow-band EEG oscillatory rhythm was

segmented into 7-second epochs, containing 2 sec before stimulus onset (Move Command) as a baseline to

5 sec before hitting the robotic device. The temporal dynamics of contralateral sensorimotor cortex asso-
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ciated with the affected area showed prominent desynchronizations only in the Mu and Alpha oscillatory

rhythms, while the time-locked dynamics of the ipsilateral cortex presented significant desynchronizations

in Mu and Beta 1 rhythms (see Figure 12, top). Furthermore, the desynchronization patterns mentioned

above were closely matched with the corresponding ERSP plots (Figure 12, bottom) computed for C3

and C4 electrodes, representing the affected and unaffected cortices. The contralateral SMR1 and SMR2

synchronizations were also reflected in the ERSP at C3 electrode.
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Figure 12: Subject 1. (top) The temporal dynamics of the baseline-corrected TS changes of the
identified narrow-band EEG rhythms during MIEC in the affected (blue) and unaffected (red)
sensorimotor cortices time-locked to the start of the MI process. The dashed lines shows the level
of significance at 1%. (bottom) The corresponding ERSP plot to further validate the time score
results were calculated for C3 (left) and C4 (right) EEG electrode sites. The pink lines indicate the
subject-specific frequency peaks at 8.0Hz (Mu), 9.5Hz (Alpha), 11.5Hz (SMR1), 14.0Hz (SMR2),
15.5Hz (Beta 1), 17.5Hz (Beta 2), and 19.5Hz (Beta 3) identified by tree-way PARAFAC model.
Zero milliseconds in these ERSP plots correspond to five seconds before hitting the robotic device.
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5.3 Consistency of MIEC dynamic characteristics

Figure 13 shows that the contralateral (top panels) and ipsilateral (bottom panels) Mu rhythms’ oscillatory

dynamics of all the subjects are consistent, suggesting the activities falling between 7.5 to 8.75Hz (Mu

rhythms) are a reliable signal for controlling the robotic device. A similar consistency in oscillatory

dynamics of contralateral and ipsilateral 11.0 to 13.0Hz (SMR1 rhythms) was also observed. A closer

look at the interplay between Mu (blue) and SMR1 (red) rhythms is provided in Figure 13 revealing

the differential contribution of these narrow-band oscillations with respect to the movement simulation.

Furthermore, SMR1 rhythm synchronization precedes Mu desynchronization, showing the potential of

considering this rhythm (SMR1) as an alternative control signal in BCI systems.
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Figure 13: The temporal dynamics of the baseline-corrected Mu (blue) and SMR1 (red) rhythms
time-locked to the start of the MI process for Subject 1 (first column), Subject 2 (second column),
and Subject 3 (third column). The temporal dynamics of the affected (top) and unaffected (bottom)
cortices during MIEC condition are indicated by blue and red, receptively. The vertical dashed
lines indicate the time when each rhythm reach to its maximum. The horizontal dashed lines show
the level of significance at 1%.
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6 Dynamics of sensorimotor modulation underlying eyes con-

ditions

6.1 Dynamic characteristics of MIEC vs. MIEO during movement com-

pletion

To investigate time-locked temporal dynamics underlying MI process with EC and EO, atom-specific time

scores were studied within 4 sec time frame windows before triggering the robotic arm, relative to a baseline

interval selected 2 sec before the movement preparation onset (Pause Index ). To smooth the data and

gain maximal signal-to-noise ratio, the trials’ time scores were then separately averaged over the ipsilateral

(right) and contralateral (left) sensorimotor cortices. Accordingly, in this step, only successful trials in

which the patient was able to hit the robotic splint were included in calculating time score averages.

From Figure 14, we can see that, in most motor-related rhythms, the dynamics of the imagery process

with EC before hitting the robotic splint closely matches the dynamics observed for the MIEO condition.

The baseline-corrected (z-score) time scores of MIEC prominently decreased in Alpha (10Hz atom) but

increased in SMR1 (11.5Hz atom) and SMR2 (14Hz atom) oscillatory rhythms over the sensorimotor

cortex contralateral to the hand used for imagery, as compared with MIEO. Furthermore, compared to the

MI with open eyes, the magnitude of suppression in ipsilateral and contralateral Mu and ipsilateral Beta 1

(15.5Hz atom) oscillatory rhythms over the sensorimotor network was strongest for imagined movement

with closed eyes, as compared with MIEO.

19



-50

-25

0

M
u
D
y
n
a
m
ic

Contralateral Ipsilateral

-50

-25

0

A
lp
h
a
D
y
n
a
m
ic

-50

-25

0

S
M
R
1
D
y
n
am

ic

-4 -2 0

-50

-25

0

Time (sec)

B
et
a
1
D
y
n
am

ic

-4 -2 0

Time (sec)

Figure 14: Temporal dynamics of the baseline-corrected Mu (first row), Alpha (second row), SMR1
(third row), Beta 1 (forth row) oscillatory atom modulations during movement execution. The time
scores were detected over the sensorimotor cortex contralateral (left column) and ipsilateral (right
column) to the imagined hand during MIEC (blue) and MIEO (red) conditions. The dashed lines
show the level of significance at 5%.
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6.2 Dynamic characteristics of MIEC vs. MIEO during movement prepa-

ration and movement initiation

Tor this purpose, the ipsi- and contralateral time scores of each identified frequency atom representing

narrow-band EEG oscillatory rhythms was segmented into 14-second epochs. In other words, each epoch

included a time frame of 2 sec before the movement preparation onset (Pause Index ) considered as a base-

line, 6 sec movement preparation phase (between the Pause Index and the Move Command presentation),

and 6 s after the sound cue presentation (i.e. MI onset) considered as movement initiation phase (Fig-

ure 15). In the movement preparation phase, there were strong enhancements in Beta 1 time scores over

both ipsi- and contralateral sensorimotor cortices for MIEC compared to MIEO. In contrast, the baseline-

corrected time score of Alpha rhythm ipsilateral to the hand used for imagery showed a significant decrease

for MIEC compared with the MIEO during the movement preparation phase. When the patient started

to imagine the movement of his affected with closed eyes, the magnitude time score suppression of Mu

and Alpha rhythms over both ipsil- and contralateral sensorimotor cortices, and Beta 1 rhythm over the

ipsilateral cortex were significantly higher compared with the MIEO trials.
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Figure 15: Temporal dynamics of the baseline-corrected Mu (first row), Alpha (second row), SMR1
(third row), Beta 1 (forth row) oscillatory atom modulations during movement preparation and
movement imagery. The time scores were detected over the sensorimotor cortex contralateral (left
column) and ipsilateral (right column) to the imagined hand during MIEC (blue) and MIEO (red)
conditions. The dashed lines show the level of significance at 5%.
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7 Conclusion and contributions of the thesis

EEG based BCI-assisted rehabilitative technologies show promising clinical results in the functional re-

covery of stroke patients. However, a better understanding of the BCI effects on the sensorimotor repair

mechanisms is still needed. In this thesis, to identify the main profiles of high-dimensional EEG data and

simplify the data structure by reducing the dimensionality, we employed an advanced analytical frame-

work based on tensor decomposition. In particular, in this thesis, we expanded on the work of Rosipal

et al. [2019], who suggested and developed a tensor-based paradigm to study the neural modulations

underpinning longitudinal mirror-box therapy.

There were two primary aims of this study: (I) To contribute to a deeper understanding of longitudinal

neuroplastic changes in the sensorimotor rhythms following a course of motor rehabilitation using robotic-

assisted MIBCI. (II) To expound on the sensorimotor modulation dynamics during different phases of

MI while patients performed the imagery task with their eyes both open and closed. In this thesis we

have attempted to address the questions mentioned above by exploring the potential benefits of tensor

decomposition methods in measuring cortical motor-related neural sources of the brain. The main results

and contributions of the thesis are as follow:

• One of the major parts of the thesis was to precisely identify dominant subject-specific motor-

related cortical rhythms by an analytical tensor decomposition framework. Using this approach, we

detected a set of highly stable narrow-band oscillatory rhythms, consistently observed among the

post-stroke subjects. The results were approximately the same regardless of whether the eyes were

open or closed or the PARAFAC or Tucker models were used. The achieved results were published

in Rošťáková et al. [2020b] and presented at Rošťáková et al. [2020a].

• Based on our quantitative analysis results, we showed that longitudinal motor training of stroke

patients using robotic-assisted MIBCI might induce neuroplastic alterations in the motor cortex,

which are associated with long-lasting changes in the brain’s electrical activity. Importantly, we

observed that narrow-band slow (in the range of ∼ 7.5Hz to ∼ 8.75Hz) and fast EEG sensorimotor

rhythms played longitudinally distinct but complementary roles in the recovery of motor functions.

• During motor imagery of the affected hand with eyes closed (MIEC), we found a functional disso-

ciation of subject-specific Mu (∼ 8Hz) and SMR1 (∼ 11.5Hz) oscillatory rhythms, in which SMR1

synchronization preceded Mu desynchronization. This shows the potential of considering SMR1

(especially those belonging to the ipsilateral side) as a supplementary control signal in BCI systems.

• We found that the oscillatory neural activity during eyes-closed (MIEC) and eyes-open (MIEO)

motor imagery were modulated differently, providing additional evidence that closed-eyes and open-

eyes are fundamentally different behaviors [Marx et al., 2004; Rimbert et al., 2018]. We investigated

the potential differences of the MIEC and MIEO dynamics in the various time frames of the MI task,
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including movement preparation, movement initiation, and movement completion phases. When

MIEC trials were compared to MIEO, three key narrow-band rhythms were identified with differently

modulated oscillatory dynamics:

1. Beta 1 (∼ 15.5Hz, ipsi- and contralateral) in the movement preparation phase

2. Contralateral Mu and SMR1 in the movement initiation phase

3. Contralateral SMR1 in the movement completion phase

• We found that tensor decomposition of EEG signals broadens our understanding of the neural

mechanism underlying human motor-related behavior. For future BCI-EEG research, our observa-

tions call for narrow-band-oriented analysis in place of canonical wide-range frequency bands, which

contain a number of oscillatory rhythms with varying modulatory effects.

The results of the current study manifest the application potential of the tensor-based analysis in quantita-

tive evaluation of cortical modulations in the sensorimotor EEG rhythms of post-stroke patients measured

during longitudinal robotic-assisted MIBCI training. Clearly, strict clinical observations are required to

assess the efficacy of treatment strategies and narrow-band distinct sensorimotor modulations. Finally,

we can conclude that the tensor-based analysis applied to measured BCI-EEG data throughout this thesis

may provide an effective alternative analytical framework to the current univariate approaches in BCI

research, offering an in-depth insight into the human sensorimotor system.
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