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Abstract

The dissertation thesis focuses on researching, developing
and applying analytical quasi-one-dimensional models to heat
transfer by conduction and convection with primary application
to oil-filled transformers. Key achievements include two ana-
lytical models. Firstly, an analytical model to conduction heat
transfer with variable boundary conditions is developed for bod-
ies of changing geometry. An application is made to transformer
layered windings where the analytical model accounts for the
presence of transformer partial cooling ducts while the winding
multi-layer structure is represented by an anisotropic thermal
conductivity. Also, an application is made to beams with uni-
formly increasing cross section where it is shown that the model
can account for the beams uniformly increasing cross-sectional
area. Secondly, a comprehensive analytical model for laminar
flow in a vertically heated natural convection loop is developed
for derivation of the equations for loop velocities and temper-
ature distribution with inclusion of temperature-dependent dy-
namic viscosity. Both analytical models are verified by finite
element and finite volume method simulations. The application
to oil-filled transformers is also verified by experimental data.

keywords: quasi-one-dimensional, transformer winding, uni-
formly increasing cross section, natural convection loop, finite
element method, finite volume method.
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Introduction

Heat transfer occurs in three spatial directions, and to fully characterize
it, we need to understand how heat moves along each of these axes.
The traditional approach to solving heat transfer problems involves
two primary methods: analytical and numerical. Analytical solutions
provide exact mathematical expressions for temperature distributions
or heat fluxes as functions of the spatial coordinates, such as x, y,
and z. On the other hand, numerical solutions provide approximate
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results, typically represented by a large set of discrete values. While
numerical methods are universally applicable, analytical solutions are
often reserved for simpler or symmetrical cases.

At first glance, one might argue that numerical solutions, which can
be directly applied to complex geometries and boundary conditions, are
sufficient. In fact, many times, this is the approach taken. However,
relying solely on numerical simulations introduces several challenges:

1. Numerical calculations are inherently dependent on the discretiza-
tion of the problem, and the accuracy of the solution is often sen-
sitive to the resolution of the mesh and the numerical methods
employed. Moreover, the results can sometimes be unreliable or
prone to errors that may be difficult to identify without further
validation from an analytical model or experiment.

2. Obtaining precise results from numerical simulations requires sig-
nificant computational resources, particularly for complex 3D prob-
lems. This can lead to long processing times and a large consump-
tion of computing power.

3. While numerical simulations offer numerical results, they do not
provide the same intuitive understanding that analytical solutions
do. For example, an analytical solution can clearly illustrate the
relationships between material properties, geometric configura-
tions, and temperature distribution, something that might re-
quire extensive and repeated simulations to reveal in a numerical
approach.

These limitations underscore the importance of finding analytical so-
lutions, which can then be validated and refined through numerical
methods or experimental data. Likewise, an analytical model can serve
as a confirmation of numerical simulations or experiments. The concept
of quasi-one-dimensional (q1D) heat transfer offers an effective way to
simplify complex 2D or 3D heat transfer problems by reducing them
to 1D models through temperature averaging. This approach is par-
ticularly effective in cases when we are interested in investigating heat
transfer in one particular direction or we need to know the value for
average temperature.
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1 Overview of quasi-1D models found in
literature

This section provides a concise review of quasi-one-dimensional (quasi-
1D) models found in literature. The primary objective is to identify
techniques and approaches that could be instrumental in developing
analytical quasi-1D models for heat transfer applications, particularly
relevant to power transformers.

Quasi-1D model for straight fins

Cooling fins are designed to maximize heat transfer by convection
through a high surface-to-volume ratio. Due to their geometry, heat
flux is predominantly along the fin’s height, but temperature variation
is more significant along its length. The 2D heat conduction prob-
lem can be transformed into a quasi-1D model by averaging the cross-
sectional temperature and analyzing how this averaged temperature
varies along the fin’s length. This approach [1] results in discrepancies
of up to 4.7 %. when compared to a two-dimensional series solution,
which is notably better than the standard one-dimensional approxi-
mation with errors up to 18.1 %. This highlights the effectiveness of
quasi-1D approximations in capturing essential temperature variations
while simplifying the computational complexity.

Quasi-1D approach to externally heated plates

In this inverse heat conduction problem, the goal is to deduce the
time-varying surface heat flux from thermocouple measurements. The
time-varying heat flux is replaced with zones of spatially constant heat
flux corresponding to individual thermocouples [2]. The higher the
number of zones, the better the approximation. Each zone is modeled
as a 1D geometry, significantly simplifying the analysis. By solving the
transient one-dimensional heat equation using Laplace transforms and
incorporating thermocouple readings, a functional relationship for the
surface zone flux is obtained. This method demonstrates how quasi-1D
models can efficiently handle complex boundary conditions and tem-
poral variations, providing valuable insights into the thermal behavior
of the system while reducing computational complexity. The approach
effectively decouples the spatial and temporal components of the prob-
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lem, allowing for a more tractable solution without sacrificing signifi-
cant accuracy.

Quasi-1D approach to calculating anisotropic thermal conduc-
tivity of metal heat spreader

In another study, a quasi-1D approach is applied twice to determine
the anisotropic thermal conductivity of a metal heat spreader [3]. First,
it is assumed that the temperature along the height of the spreader is
averaged allowing for the examination of the temperature distribution
along its radius. This leads to a modified Bessel equation, which can
be solved analytically.

Secondly,a shape factor is introduced to modify the 1D approach
into a quasi-1D approach, accounting for axial thermal resistance. The
introduction of this shape factor involves numerical simulations and em-
pirical data fitting to refine the model further. This iterative process
enhances the accuracy of the computed radial and axial thermal con-
ductivities. The method underscores the importance of incorporating
geometric considerations and empirical validation to improve quasi-1D
models’ predictive capabilities.

Quasi-1D approach to curved surface longitudinal thermocou-
ple

Quasi-1D heat transfer is developed for a medium with varying
thickness, specifically within thermocouples used in micro nozzles. The
model considers various energy conversion processes, including Peltier
flux, heat conduction flux, convection through the inclined surface, See-
beck effect, and Joule heating [4]. By balancing these components, a
differential equation is derived that describes the temperature distri-
bution within the thermocouple pellet.

The study’s strength lies in its ability to account for multiple heat
transfer mechanisms within a single quasi-1D framework, significantly
reducing computational demands compared to full 2D simulations. This
highlights the efficiency and versatility of quasi-1D models when deal-
ing with complex thermal systems.
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Quasi-1D fluid flow due to changing cross-section area

The concept of quasi-1D flow is extended to fluid dynamics, where
variations in cross-sectional area are considered [5]. Using control vol-
ume analysis and a staggered grid system, equations are developed that
describe mass, momentum, and energy conservation within channels of
variable cross-sections. This approach [6] allows for the modeling of
flows in axisymmetric channels like convergent-divergent nozzles.

A staggered grid arrangement is used to numerically solve the vary-
ing cross-section channel equations for mass, momentum, and energy
conservation. This approach effectively mitigate discretization errors,
such as odd-even decoupling between pressure and velocity fields. The
methodology showcases how quasi-1D approximations facilitate the anal-
ysis of intricate fluid dynamics problems while maintaining computa-
tional efficiency.

Natural convection in heated open-ended vertical channel

A quasi-1D model is applied to study natural convection in a heated
vertical channel using density averaging and the Boussinesq approxi-
mation [7]. By formulating an equation for loop velocity, the quasi-1D
model captures the essential physics driving the flow without resorting
to more complex 3D models. This simplified approach provides valu-
able insights into the relationship between air speed, heat flux, and
channel properties, demonstrating the utility of quasi-1D models in
understanding natural convection phenomena.

Conclusion

In summary, the reviewed models illustrate the diverse applications
and methodologies of quasi-1D models across various heat transfer and
fluid dynamics problems. These models offer significant advantages in
terms of computational efficiency and conceptual simplicity while re-
taining sufficient accuracy for many practical scenarios. Techniques
such as cross-sectional temperature averaging, zonal approximations
and control volume method enhance their applicability and precision.
Overall, quasi-1D models represent a powerful toolset for tackling com-
plex thermal and fluid systems.
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2 Thesis aims

The aims of the thesis are:

1. Review 1D and quasi-1D heat transfer by conduction and con-
vection models in literature and identify their similarities and
differences. Verify models of quasi-1D heat transfer with FEM
simulations that might be relevant for heat transfer in power
transformers.

2. Simulate the heat conduction in power transformer windings with
partial cooling ducts in order to verify a proposed analytical
model and to obtain information that can be used to improve
the cooling of the windings.

3. Formulate a general analytical model for quasi-1D heat conduc-
tion transfer for variable cross section and 1D curvilinear coordi-
nate systems.

4. Develop a model for viscous natural convection heat transfer in-
side the power transformer partial cooling ducts and verify the
model with FEM simulations and obtain information that can be
used to improve the cooling of the transformer windings.

3 Methodology

The methodology presented in the dissertation thesis revolves around
the development and application of a quasi-one-dimensional (q1D) an-
alytical framework for modeling heat transfer, fluid flow, and tempera-
ture distribution in complex systems such as transformer windings and
natural convection loops. The approach combines mathematical deriva-
tions, simplifications of multi-dimensional problems, and comparisons
with numerical simulations such as FEM (finite element method) and
FVM (finite volume method) and experimental data to validate the
model’s accuracy and applicability.

Quasi-one-dimensional modeling framework

The core of the methodology lies in the formulation of a quasi-one-
dimensional model that reduces the complexity of three-dimensional
heat transfer and fluid flow problems into a more manageable form.
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This is achieved by averaging physical quantities, such as tempera-
ture, over specific cross-sections or dimensions while retaining essential
dependencies on key spatial coordinates. For example, the averaged
temperature θ̄(x) is defined as an integral over a cross-sectional area,
reducing the problem to a single coordinate (x) while accounting for
variations in other directions through boundary conditions and effec-
tive parameters. The methodology is generalized to handle curved ge-
ometries such as polar coordinates, demonstrating its adaptability to
different coordinate systems and configurations.

The q1D differential equation heat equation is derived using energy
balance principles, where heat fluxes, convective boundary conditions,
and internal heat generation are integrated over infinitesimal elements.
The model incorporates thermal conductivity, convective heat transfer
coefficients, and fluid velocity to describe heat transport within the
system. This approach allows for the inclusion of anisotropic thermal
properties and non-uniform boundary conditions, making it versatile
for various geometries and applications.

Application to beams with uniformly increasing cross-section

Q1D approach is applied to analysis of the steady-state heat trans-
fer in beams whose cross-sectional area increases uniformly along their
length. The goal is to simplify the inherently two-dimensional heat
transfer problem into a computationally efficient one-dimensional for-
mulation while maintaining accuracy through comparisons with finite
element method (FEM) simulations. The model considers beams with
a geometry defined by an annular sector of finite thickness, character-
ized by convective heat transfer along the radial surfaces and prescribed
temperatures at the curved boundaries. This kind of geometry and heat
transfer has been considered by many authors, several examples can be
found in [8], [9], [10], [11] and [12]. The q1D framework reduces the
complexity of the problem by averaging temperature over the beam’s
cross-section. This reduction is achieved by transforming the govern-
ing two-dimensional heat equation into a one-dimensional form using
proportionality coefficients k, which relate the surface temperature to
the cross-sectionally averaged temperature. Then the q1D equations
are solved with python and Wolfram Mathematica scripts. Finally,
the accuracy of the q1D model is rigorously verified by comparing its
predictions with FEM simulations.
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Application to transformer windings

In the context of transformer windings, the q1D model is applied
to analyze temperature distributions in foil-type windings with partial
cooling ducts. The winding is divided into segments, each characterized
by its heat transfer properties. The model accounts for radial and
tangential heat conduction, as well as convective cooling at boundaries.
By comparing the q1D results with FEM simulations and experimental
data, the methodology demonstrates excellent agreement, validating
its accuracy. The q1D model also provides insights into the impact
of design parameters, such as insulation thickness and cooling duct
placement, on temperature rise and heat dissipation efficiency.

Natural convection loops

For natural convection loops, the methodology extends the q1D
framework to include fluid dynamics. The governing equations incor-
porate buoyancy-driven flow and energy transport within the loop. The
model calculates average velocities and temperature rises in different
sections (e.g., channel, fin, top, and bottom) and compares these predic-
tions with FVM simulations. The results highlight the model’s ability
to capture key phenomena, such as velocity profiles and temperature
gradients, with very good accuracy.

Validation and comparison

A significant aspect of the methodology is the verification of the
q1D model against numerical simulations (FEM and FVM) and ex-
perimental data. Tables and figures in the thesis compare predicted
values (e.g., temperature rise, velocity profiles) with simulation results
and industrial test data. The q1D model outperforms simpler models,
such as weighted average temperature and thermal resistance models,
particularly in capturing tangential heat transfer and non-uniform tem-
perature distributions.

Conclusion

The methodology in the thesis thesis presents a robust and versatile
quasi-one-dimensional framework for analyzing heat transfer and fluid
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flow in engineering systems. By combining analytical rigor, mathemat-
ical simplifications, and validation against numerical and experimental
data, the model provides valuable insights into temperature distribu-
tions, heat dissipation, and fluid dynamics. Its application to trans-
former windings and natural convection loops highlights its practical
relevance and potential for broader use in thermal management and
design optimization.

4 Results: development and validation of
our quasi-1D models

In this section we present the results of our research. First is pre-
sented the generalized quasi-one-dimensional model. The model then
serves as a springboard for developing quasi-one-dimensional models for
beams with increasing cross section, transformer windings and natural
convection loops. These models are verified with FEM (finite element
method) and FMV (finite volume method) simulations. The quasi-
one-dimensional transformer winding model is also validated experi-
mentally. We also present two formulas for an important parameter k -
which relates the surface temperature to the cross-sectionally averaged
temperature.

4.1 General formulation of our quasi-one-dimensional
model

Figure 1: Two dimensional description of an infinitesimal element in
orthogonal curved coordinates.

We seek an effective equation for the averaged temperature θ(ξ) which
depends on a single curvilinear coordinate ξ - the direction the heat
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transfer is being investigated in. The other two coordinates η, ζ define
the cross-section of a heat-conducting solid, and averaging is performed
over these coordinates:

θ̄(ξ) =
1

Sξ

˛

Sξ

θ(ξ, η, ζ)dSξ (4.1)

Assuming local orthogonality of coordinates and boundary surfaces de-
fined by constant-coordinate planes, for clarity, the problem is consid-
ered in two dimensions (ξ, η) with all quantities uniform along ζ. The
generalization to three dimensions follows similarly. The element in
Fig. 1 is infinitesimal only along the coordinate ξ, along the coordinate
η it extends over the whole cross section of the solid for η ∈ (b0, b1).
The steady-state energy balance for an infinitesimal element of area dS
and volume dV gives:

ˆ

S

d~S · ~q =

ˆ

V

qV dV (4.2)

where q is the heat flux density and qV is heat generation per unit
volume. Applying curvilinear coordinates, expanding terms via Taylor
series, integrating over the element and using Fourier’s law we obtain
a generalized curvilinear differential equation

− d

dξ

[ˆ b1

b0

λξ
hη
hξ

∂θ(ξ, η)

∂ξ
dη

]
+

b1∑
η=b0

αη

[
θη(ξ)− θη,∞(ξ)

]
hξ = qcdξ (4.3)

where λξ is thermal conductivity in the direction of ξ, index∞ denotes
fluid temperature sufficiently away from the solid’s surface, αη is the
convective heat transfer coefficient, θη(ξ) is the convective surface tem-
perature, hξ, hη, hζ are Lame coefficients and qcdξ is the heat produced
per cdξ

qcdξ =

ˆ b1

b0

qV hξhηdη. (4.4)

Applying Eq. (4.1) to Eq. (4.3) cannot be done in a general way. Here
we proceed to do it for Cartesian coordinates. Transforming Eq. (4.1)
to a 2D Cartesian case we get
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θ̄(x) =
1

b

ˆ b

0

θ(x, y)dy (4.5)

which, with some manipulation, transforms Eq. (4.3) to

− d

dx

[
λx

d

dx
θ̄(x)

]
+

1

b

b∑
y=0

αy

[
θy(x)− θy,∞(x)

]
= qV (4.6)

when expressed in Cartesian coordinates. This equation has two vari-
ables: cross-sectionally averaged temperatures θ̄(x) and surface tem-
perature θy(x), y assuming either 0 or b. To have the equation closed
we introduce an important parameter k - the coefficient of proportion
between surface temperature rise and the cross-sectionally averaged
temperature rise

θy(x)− θ∞ = ky(x)(θ̄(x)− θ∞) (4.7)

which changes Eq. (4.6) to

− λx
d2θ̄(x)

dx2
+

2αk(x)

b
(θ̄(x)− θoil) = qV (4.8)

for the symmetric case when k0 = kb = k. Now the equation is purely
one-dimensional. It can be shown that for the symmetric case

k(x) =

(
αb(x)

6λy
+ 1

)−1

(4.9)

4.2 Application of our quasi-1D approach to beams
with uniformly increasing cross section

We have a case of polar coordinates where the curvilinear coordinates
transform as follows ξ → r, η → ϕ. The thermal conductivity may
be assumed to depend on r only. This case represents a solid with
uniformly increasing cross-sectional area, Fig. 2.
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Figure 2: Polar coordinates in a curved solid (indicated by thick gray
lines) with increasing cross-sectional area along the radial coordinate
r. Also shown is the infinitesimal volume element for the the boundary
surfaces characterized by ϕ0, ϕ1.

Now Eq. (4.3) takes form

− d

dr

[
r

d

dr
θ̄(r)

]
+

2αk(r)

λ∆ϕ

[
θ̄(r)− θ∞

]
=
qV
λ
r (4.10)

where θϕ(r) is the convective surface temperature at ϕ0 or ϕ1, ∆ϕ =
ϕ1−ϕ0 and the definition of the cross-sectionally averaged temperature
is

θ̄(r) =
1

∆ϕ

ˆ ϕ1

ϕ0

θ(r, ϕ)dϕ (4.11)

and

θϕ(r)− θ∞ = k(r)[θ̄(r)− θ∞] (4.12)

Equation 4.10 describes the change of cross-sectionally averaged tem-
perature θ̄(r) in a a beam with uniformly increasing cross-section with
two symmetric convective boundaries characterized by heat transfer co-
efficient α and fluid temperature θ∞. We set two additional types of
boundary conditions for the beam. The first type has zero flux for the
non-convective boundary conditions and internal heat generation, Fig.
3 1). The second type has the two non-convective boundaries kept at
temperatures θ0 (at r = r0) and θ1 (at r = r1) and there is no internal
heat generation, Fig. 3 2).
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Figure 3: Both beams have two symmetric convective boundaries. The
two non-convective boundaries are different. The first beam has inter-
nal heat generation, the second does not.

For the first type of the beam we transform Eq. (4.9) to polar coordi-
nates

k(r) =

(
αh(r)

6λ
+ 1

)−1

(4.13)

where we substituted b with h for the cross sectional width. For the
second type of beam we find a different formula for k(r)

k(r) =

∑N
n=1En sin(snr) + θ0 + θ1−θ0

L r − θ∞∑N
n=1

2En
hsn

sin(snr) tanh(snh/2) + θ0 + θ1−θ0
L r − θ∞

(4.14)

where

En =
2α
Lλsn

[cos(snL)(θ1 − θF)− (θ0 − θF)]

sn tanh(snh/2) + α
λ

(4.15)

sn =
nπ

L
(4.16)

Unfortunately, with the formulas for k, equation (4.10) cannot be solved
analytically for either type of the beams. So we solve the quasi-1D
equation numerically with Python and Wolfram Mathematica scripts
to compare them with FEM simulations.

4.2.1 Comparison with FEM simulations

For both types of beams we choose α = 50 W/(m2·K), r0 = 1 m, r1 = 2
m. For the first type of beam we set qV = 50 W ·m−3. For the second
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type of beam we set the temperatures at θ0 = 200 ◦C and θ1 = 100 ◦C.
On the other hand, we choose three different values for the parameter
∆φ = π/2 (Fig. 4a), 2π/15 (Fig. 4b) and π/18 (Fig. 4c) that represent
three different geometries, and even larger set of thermal conductivities
λ such that we explore three representative values of the Biot number

Bi =
αh̄

2λ
∈ {0.5, 1, 10, 100} (4.17)

where h̄ represents the beam medium width.

Figure 4: The three geometries tested: a) The mean width h̄ is signifi-
cantly bigger than the convective boundary ∆r, b) h̄ is approximately
the same as ∆r, c) h̄ is significantly smaller than ∆r.

The results show that, for both types of beams, FEM and model values
for the cross sectionally averaged temperatures are in excellent agree-
ment across a range of Biot numbers with largest discrepancy being
just 1%. Even better, the discrepancy between FEM and the model for
the average temperature rise ∆θ̄ is less than 0.5 % for all tested Biot
numbers. In essence, our quasi-1D analytical approach has succeeded
in transforming the beams 2D temperature equation to 1D temperature
equation, thus reducing the computational effort.
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4.3 Application of our quasi-1D approach to trans-
former winding with partial cooling ducts

 

Figure 5: The winding is divided into segments and the cooling channels
are represented by convective boundaries. Due to symmetry only the
upper half of the winding needs to be considered. The three segments
can be identified by their tangential lengths l0, l1 and l2. The latter
two are separated by a partial cooling duct.

The multilayer structure of the winding is replaced by a homogenous
model with anisotropic thermal conductivity in the quasi-one-dimensional
model

Figure 6: The multilayer structure of the foil winding (on the left) is
replaced with a homogeneous model with anisotropic thermal conduc-
tivity (on the right).

15



so that the winding segment differential equation features thermal con-
ductivity in the radial and tangential direction

− λx
d2θ̄i(x)

dx2
+
κi
hi

(θ̄i(x)− θoil) = qV , i = 0, 1, 2 (4.18)

where width b is replaced by the segment width hi, x is a curvilinear
coordinate, i is the segment number and the radial thermal conductivity
λy is hidden in the formula for parameter κ. For symmetrical convective
boundary conditions we have

κi = 2αki, ki =

(
1 +

αhi
6λy

)−1

(4.19)

and for two distinct heat transfer coefficients α0,i 6= αh,i,

κi = D−1
i [α0,i (3/4 + 3fh,i/2) + αh,i (3/4 + 3f0,i/2)] , f0,i =

α0,ih

4λy
, fh,i =

αh,ih

4λy
(4.20)

The solution of Eq. 4.18 is

θ̄i(x) = θoil + γi +Bicosh

(
x− li
δi

)
(4.21)

where

γi =
hi
κi
qV , δi =

√
λxhi
κi

, Bi = Ci

li
δi

sinh
(
li
δi

) , (4.22)

and

Ci =
δi
li

tanh

(
li
δi

)[
γ0 − γi −

∑2
j=0

hj
δj

(γ0 − γj) tanh
(
lj
δj

)
∑2
j=0

hj
δj

tanh
(
lj
δj

) ]
. (4.23)

Average winding temperature is given by

θ̄ =

∑2
i=0 hiliθ̄i∑2
i=0 hili

(4.24)

where

θ̄i =
1

li

ˆ li

0

θi(x) dx = θoil + γi + Ci. (4.25)
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4.3.1 Comparison with FEM simulations

We compare the analytical solution for θ̄i(x) with a two-dimensional
FEM simulation of the low-voltage winding of a three phase trans-
former, label aTOHn 3710/22. In this transformer, both, low-voltage
and high voltage winding have one partial duct. The temperature and
heat flux along the axial direction is considered constant. The FEM
2D winding model is constructed in Gmsh [13] and the simulation is
run in Elmer [14].

17.5

18

18.5

19

19.5

20

20.5

-0.3 -0.2 -0.1 0 0.1

Figure 7: Comparison of the FEM and q1D model values for radially
averaged temperature rise along the x axis over the three winding seg-
ments.

The agreement is excellent. Next, we compare the FEM simulation
and model value for the low-voltage winding average temperature rise
above the oil temperature ∆θ̄. For an illustration, we add to the com-
parison values for ∆θ̄ computed using lumped and slab model used in
engineering for estimation of temperatures.

17



Table 1: Comparison of values for the winding temperature rise. Com-
pared are the values obtained from the 2D FEM simulation with the
values obtained from the q1D, weighted average and thermal resistance
models.

model FEM q1D slabs lumped

∆θ̄ (K) 18.96 18.97 21.02 21.61
relative error
from FEM (%)

n/a 0.0 10.9 14.0

Clearly, the q1D model provides the value closest to the FEM results.
This is expected since the weighted average temperature (slab) and
thermal resistance (lumped) models do not take into account the heat
transfer in the winding tangential direction and their values are corre-
spondingly higher.

4.3.2 Comparison with industrial data

Here we compare the quasi-1D model average temperature results with
industrial test conducted by BEZ Transformatory, for both, low-voltage
and high voltage winding, for transformer aTOHn 3710/22

Table 2: Comparison of industrial test values for average temperature
rise with the q1D model values for transformer model aTOHn 3710/22.
Due to the uncertainty of the partial cooling duct length, the values for
the q1D model are expressed with a tolerance.

type of winding Oil temp.
θ̄oil (◦C)

Indust. test
∆θ̄ (K)

q1D model
∆θ̄ (K)

Indust. test vs
q1D model (%)

LV 36.8 18.80 18.97 ∓ 0.19 1 ∓ 0.9
HV 36.8 17.00 17.72 ± 0.24 4.2 ∓ 1.4

In the case of the low-voltage winding, for which the model is easier
applicable, we get around 1 % discrepancy. In the case of the high-
voltage winding, which is considerably more complex, we get around
4.2 % discrepancy with the industrial data. Thus the q1D model can
be used effectively to predict the cooling power of a partial cooling duct
added to an oil transformer winding [15].
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4.4 Vertically heated natural convection loop model

In previous section we developed a quasi-one-dimensional framework to
determine the temperature distribution within transformer windings.
This approach, however, assumes temperature uniformity along the
winding height, represented here by the z-axis. To extend this model
and capture temperature variations with respect to height, we develop
an analytical loop model specifically for transformer oil distribution.

Figure 8: Model of a natural convection loop. On the left, the heat
enters the channel from two walls characterized by qch. On the right,
the heat leaves the fin through two walls characterized by αf . On the
top, the heat leaves the fin through one wall characterized by αt

We have a natural convection loop that consists of a vertical channel
and fin of length lch and widths hch, hf respectively, horizontal top and
bottom of width ht and lengths lt, lb respectively, Fig. 8. We consider
that the loop has the same depth along the axis perpendicular to the
fluid flow (x axis) and that there is no temperature and flux change
along x axis. The loop is heated at the channel, with the heat amount
characterized by surface heat flux density qch, and cooled at the fin and
top, with the heat loss characterized by the fin and top heat transfer
coefficients αf , αt. The rest of the loop - the bottom and loop two top
corners - is considered insulated. The fluid is heated in the channel
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to reach temperature θch,t which it retains in the left top corner of
the loop. The fluid is then cooled in the top part of the loop to reach
temperature θf,t which it retains in the right top corner of the loop. The
fluid is then cooled in the fin to reach temperature θb, which it retains
in the bottom part of the loop. Using the q1D approach we obtain
formulas for the loop fin, channel and top cross-sectionally averaged
temperatures

θ̄f(z) = (θf,t − θa)ecf (z−lch) + θa (4.26)

θ̄ch(z) = cchz + θb (4.27)

θ̄t(y) = (θf,t − θa)ect(lt−y) + θa (4.28)

where θf,t is the value of the temperature for z = lch, kf =

(
1+αfhf

6λ

)−1

,

kt =

(
1 + αtht

6λ

)−1

, cf = 2kfαf

hfcV ρ̄v̄f
, cch = 2qch

hchcV ρ̄chv̄ch
, and ct = 2ktαt

htcV ρ̄v̄t
.

For the bottom temperature we obtain

θb = (θf,t − θa)e−cf lch + θa (4.29)

We also obtain fin, channel and top average temperatures

θ̄f =
(θf,t − θa)

(
1− e−cf lch

)
cf lch

+ θa (4.30)

θ̄ch =
cchlch

2
+ θb (4.31)

θ̄t =
(θf,t − θa)

(
ectlt − 1

)
ctlt

+ θa (4.32)

To find loop velocities we formulate an integral equation for the
force acting in the fluid on a volume V bounded by a closed surface S
is given by mechanical stress and buoyancy force

~F =

˛
d~S· ↔σ +

ˆ
ρ(θ)~gdV (4.33)
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where
↔
σ is the stress tensor and ~g is gravitational acceleration vector.

We use a linear approximation for density change with temperature

ρ(θ) = ρref(1− β(θ − θref)) (4.34)

where β is the coefficient of thermal expansion and the reference density
ρref corresponds to the reference temperature θref . We suppose that
velocities are constant in the individual loop parts (~F = 0). Using
velocity parabolic cross-sectional profile

v(y) = 4vmax

(
1− y

h

) y
h

(4.35)

and continuity equation

v̄fSf = v̄chSch (4.36)

we get

v̄ch =
gρrefβ

(
θ̄ch − θ̄f

)
12
(
η̄ch

h2
ch

+ η̄fhch

h3
f

) (4.37)

for the channel cross-sectionally averaged velocity, where η is dynamic
velocity. Other loop velocities are easily obtained with the continuity
equation. We introduce an energy balance equation for the total heat
amount entering the channel and exiting fin and top

qchlch = qf lch + qtlt (4.38)

Combining equations we arrive at the temperature

θf,t =
qchcf lch

αfkf(ectlt − e−cf lch)
+ θa (4.39)

Manipulating equations, we arrive at the channel velocity equation

v̄ch −A

 B
(
e
C
v̄ch + 1

)
v̄ch

(
e
C
v̄ch − 1

) −
(
e
D
v̄ch − 1

)
(
e
C
v̄ch − 1

)
 = 0 (4.40)
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which contains only one unknown – the channel average velocity – and
is only dependant on the loop geometric, material and flux parameters,
where

A =
gρrefβqch

12kfαf

(
η̄ch

h2
ch

+ η̄fhch

h3
f

) (4.41)

B =
kfαf lch
hchcV ρ̄

(4.42)

C = 2B

(
1 +

ktαtlt
kfαf lch

)
(4.43)

D = 2B (4.44)

Note: In the model equations, the top of the loop is assumed to be
cooled from both its upper and lower sides. However, in Fig. 8 and in
the FVM simulations, cooling is applied only to the upper side. The
reason for using symmetric cooling in the analytical model is the defi-
nition of the parameter kt. The formula for k in in Eq. 4.7 was derived
for a solid with thermal conduction and convective boundaries. In con-
trast, the top of the loop involves thermal conduction with convective
boundaries plus a moving fluid. Despite this difference, the formula
for k under symmetric boundary conditions provides a good approx-
imation for both symmetric and asymmetric cooling at the loop top,
as long as fluid flow is present in the loop. As a consequence, when
modeling asymmetric cooling, the top heat transfer coefficient αt in
the analytical model must be set to half the value used in the FVM
simulations.

4.4.1 Comparison with FVM simulations

We have two loop geometries which we label 1 and 2. The geometries
are two-dimensional as we consider no velocity and temperature change
along the x axis. Both geometries have common widths but different
lengths, Tab. 3. All four FVM (finite volume method) simulations have
common fluid parameters.
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Table 3: Two loop geometries widths and lengths

hch(mm) hf(mm) ht(mm) lch (mm) lt (mm)
geometry 1 4.5 6 12 800 150
geometry 2 4.5 6 12 500 500

An additional common parameter is the ambient temperature θa=
16.5 ◦C. The heat transfer coefficients are different, are αf = 5 W/(m2·K),
αt = 10 W/(m2·K). Please note that, while the fin has the heat transfer
coefficient on both sides, the top has it only on the upper side, Fig. 8.
We set two values for the channel heating, qch = 120 W ·m−2 which we
label as A and qch = 180 W ·m−2 which we label as B. Two different
geometries and two different channel heatings amount to four different
setups: 1A, 1B, 2A and 2B. The simulations are done in Ansys Fluent
[Ansys]. The type of simulation is viscous laminar flow, pseudo tran-
sient. The values we input into the analytical model are exactly the
same as the values for the four FVM simulations with one exception,
αt = 5 W/(m2·K), which is the half of the FVM simulation value, be-
cause we model the loop top in our analytical model as if it had two
convective boundaries - unlike in Fig. 8.

Comparison of loop velocities and temperatures

The analytical model provides the average velocity in the direction
of the flow which is responsible for increased heat transfer due to the
fluid flow. This value is compared to FVM corresponding average ve-
locity component in the direction of the flow which is z for the channel
and fin and y for the top and bottom. FVM average velocity compo-
nent values are extracted from simulations and model average velocity
values are obtained from Eqs. (4.36) and (4.40). To solve Eq. (4.40)
we write a script in Python which makes use of function fsolve. FVM
average temperatures are extracted from simulations and model aver-
age temperature values are obtained from Eqs. (4.29), (4.30), (4.31)
and (4.32). As an illustration, we compare the analytical model and
FVM simulation results for the 2B setup, Tabs. 4 and 5. The quantities
of interest are the channel and fin average velocities, and temperature
rises above the ambient temperature.
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Table 4: Comparison of the analytical model results with the FVM
simulation for the channel and fin average velocities for the 2B setup.
Velocity values include the standard deviation.

Model (mm/s) FVM (mm/s) Relative difference (%)
v̄ch 2.155 2.170 ± 0.018 0.69
v̄f 1.616 1.628 ± 0.012 0.73

Table 5: Comparison of the analytical model results with the FVM
simulation for the channel and fin average temperature rises for the 2B
setup.

Model (K) FVM (K) Relative difference (%)
∆θch 19.57 19.84 1.37
∆θf 16.29 16.28 0.06

Next, we compare FVM and analytical model temperature change
rise (above the ambient temperature) for the channel and fin. The FVM
values are extracted from simulations and model values are calculated
with Eqs. (4.26) and (4.27). Simulation 2B is chosen as a representative
simulation.
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Figure 9: Comparison of the analytical model and FVM values for the
temperature change (above the ambient temperature) in the channel
and fin.
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Overall, we get a very good agreement between the analytical model
and the four FVM simulations for the loop velocities and temperatures.
Almost all model values exhibit less than 2 % discrepancy with the
FVM simulations.

5 Thesis conclusions

In this section, we examine the four objectives outlined at the beginning
of the thesis.

1. We have reviewed a range of studies on 1D and quasi-1D heat
transfer. A comparative analysis of these works is provided in
the thesis introduction while individual reviews are found in the
thesis first chapter. Our approach to quasi-1D heat transfer in
transformer windings aligns most closely with the quasi-1D heat
transfer approach to rectangular fins presented in [1], as elab-
orated in the thesis section on local ansatz for one-domesional
slab.

2. We have simulated the heat conduction in power transformer
windings with partial cooling ducts and have shown that the pro-
posed analytical model offers valuable insights for improving the
cooling efficiency of such windings. The model has no counter-
part in literature and has been proven successful when compared
with simulation and experimental data.

3. We have formulated a generalized analytical model for quasi-1D
heat conduction in systems with variable cross section and applied
it to beam with variable cross sections and oil-filled transformers.
Three types of boundary conditions are explicitly treated in the
model: zero flux, constant temperature and convective boundary
characterized by heat transfer coefficient and fluid temperature.
The model’s accuracy has been validated against simulation data.
Additionally, the model helped us develop the vertically heated
natural convection loop model, which is discussed in the following
objective.

4. We have developed a model for laminar viscous natural convection
heat transfer within a vertically heated natural convection loop.
This model serves as a foundation for analyzing natural convec-
tion in oil-filled transformers, with the ultimate goal of enabling
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the prediction of axial temperature distributions and hot spots
using purely analytical methods. The model has been proven suc-
cessful when compared with simulation data. Furthermore, the
natural convection loop model has broad applicability and can be
adapted to various heating and cooling configurations, including
side, vertical, and horizontal arrangements, to represent different
technological applications driven by laminar natural convection.
We also believe that the model can be extended to incorporate
turbulent flow and non-uniform loop geometries, such as loops
with varying heights. Upon successful expansion, the model could
find applications in a diverse range of fields, including electronics
cooling, solar water heating, emergency nuclear reactor cooling
and geothermal reservoirs.
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