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Hoci efektívne využívanie nových metód v oblasti biomedicíny prináša výrazné vylepšenia,
reálne aplikácie sú stále výzvou, najmä z dôvodu zložitosti medicínskych dát. Vzhľadom
na dôležitosť medicínskej diagnostiky sa v tejto oblasti zavádzajú inteligentné metódy,
ktoré viedli v posledných rokoch k vytvoreniu novej vednej oblasti - umelej inteligen-
cie v medicíne. Z dôvodu komplexnosti riešenej problematiky ako celku sa v tejto práci
zameriavame na analýzu špecifických podoblastí medicínskej diagnostiky s cieľom zlepšiť
existujúce metódy a odstrániť nedostatky aktuálne používaných modelov na báze umelých
neurónových sietí. Z mnohých rôznych metód sa naša pozornosť upriamuje na biologicky
inšpirované prístupy teórie viacerých rozlíšení a waveletovej analýzy, ktoré sú vhodné
na extrakciu kontextových a štrukturálnych informácií z vizuálnych dát. Inkorporá-
ciou týchto prístupov do najnovších modelov neurónových sietí vo forme fixných filtrov
určených na extrakciu intrinzických príznakov sme analyzovali zmeny v architektúre siete
schopnej efektívneho učenia aj pri limitovanom počte trénovacích vzoriek. Pri skríningu
fundus obrazov sietnice pomocou hlbokých neurónových sietí sme zavedením stroja s pod-
pornými vektormi vo forme pomocného klasifikátora zlepšili a urýchlili proces lokalizá-
cie tvrdých exudátov ako príznakov diabetickej retinopatie. Za účelom širšieho uplatne-
nia biometrických systémov v biomedicíne sme na základe rozsiahlej analýzy odpovedali
na šesť vedeckých otázok obsahujúcich odporúčania pre pokračovanie výskumu v oblasti
rozpoznávania ľudských dúhoviek s cieľom zlepšiť kvalitu a dostupnosť verejných databáz.

Kľúčové slová: konvolučné neurónové siete, diabetická retinopatia, rozpoznávanie dúhovky,
hlboké učenie
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Although the effective use of novel methods in biomedicine brings significant improve-
ments, real-world applications are still a challenge, especially as regards the complexity
of medical data. Given the importance of medical diagnostics, intelligent methods are
being introduced in this area, which in recent years have led to creation of a new scien-
tific field - artificial intelligence in medicine. Due to the complexity of the entire field, in
this work we focus on the analysis of specific sub-areas of medical diagnostics in order to
improve existing methods and eliminate the shortcomings of currently used models based
on artificial neural networks. Of the many different methods, our attention is focused on
biologically inspired approaches such as scale-space theory and wavelet analysis, which
are suitable for extracting contextual and structural information from visual data. By in-
corporating these approaches into the latest models of neural networks in the form of fixed
filters designed for the extraction of intrinsic features, we created and analysed changes
in the network architecture capable of effective learning even with a limited number of
training samples. In the screening of retinal fundus images using deep neural networks, we
have improved and accelerated the process of localisation of hard exudates as features of
diabetic retinopathy by introducing a support vector machine in the form of an auxiliary
classifier. For the purpose of a wider application of biometric systems in biomedicine,
based on an extensive analysis, we answered six scientific questions containing recommen-
dations for the continuation of research in the field of human iris recognition with the aim
of improving the quality and availability of public databases.

Keywords: convolutional neural networks, diabetic retinopathy, iris recognition, deep
learning
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1CHAPTER

Introduction

Several successful healthcare applications in recent years have shown the undisputed
benefits of using artificial intelligence as an appropriate tool to solve complex problems.
In the field of healthcare, especially in biomedicine, in addition to a specific non-trivial
problem, expertise is also required. Despite the availability of a considerable amount of
data, conventional methods often fail mainly due to the difficulty and nonlinear nature
of the problems addressed [1]. Therefore, the role of the so-called expert is increasingly
being taken up by complex computational models such as artificial neural networks. How-
ever, these are not applied as the only decision-making system in the diagnosis process.
In addition to legal aspects taking into account strict regulations requiring clinical trials
prior to the introduction of given systems into medical practise, the primary reason is
always patient safety. Due to the complexity of these computational models, it is not
always clear which parameters influence the current output hypothesis. In the event of
an error, life-threatening situations could arise, and therefore it is necessary to assume
responsibility for them. However, in the case of artificial neural networks, this issue is
so complex that current legislation has not yet answered these and many other emerging
questions [2]. In spite of these shortcomings, artificial neural networks are increasingly
more popular in medicine, largely due to their high accuracy, which exceeds standard
computational models. However, even despite the people’s awareness of their undeniable
advantages, they often face cultural resistance. Mistrust in new technology can only be
overcome by practical applications and achieving better results compared to the current
state regardless of the area concerned. And that is what we are witnessing in the field
of biomedicine today. In this respect, it is important to analyse the improvement that
can bring the application of these computational models to medical practise. What con-
sequences and shortcomings are associated with their deployment and, ultimately, why is
it important for research in this area to proceed.
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2CHAPTER

Improving Neural Network Models via Visual
Priors

In the field of biomedicine, the most commonly used convolutional neural networks are
inspired by the well-known research of Hubel and Wiesel [3], who investigated the primary
visual cortex (V1) of cats by analysing the neural response to various visual stimuli. These
have undergone significant progress in recent years, aimed at eliminating shortcomings
and deepening architectures in order to increase their overall accuracy on standardised
benchmarks. In addition to usual experiments, visualisation methods have been developed
to better understand the processing of information within their architecture [4, 5]. These
revealed a parallel with biological findings in neuroscience, which points to a gradual
distinction between simple shapes and textures in the first layers of the neural pathway
and complex shapes and objects in the deeper layers [6]. An example is the common
generation of visually similar convolution kernels resembling Gabor filters in the first layer,
suggesting that convolutional neural networks mimic the biological processing of visual
information at the fundamental level. Despite these discoveries, major developments in
deep neural networks focus on improving their accuracy, and achieving a correspondence
with neuroscience is secondary. In recent years, however, some scientists have expressed
views on the simplification of deep neural networks in order to remove the black-box
principle, which would lead to a deeper understanding and thus improved models. One
emerging direction of research is to introduce visual priors into architectures in order to
understand their impact not only on the accuracy achieved, but also on the creation of
features within a given application domain.

We can decompose regular convolution into two simpler operations: extraction of
features in the spatial plane using dephtwise convolution and subsequent channel recom-
bination using pointwise convolution effectively creating a depthwise separable convolu-
tional layer [7, 8]. Depthwise convolution is a convolution in the spatial domain that is
applied independently over every channel of an input. The calculation of the k-th fea-
ture map h̃y

k ∈ R1×NKDx×(Wx−WK+1)×(Hx−HK+1), k ∈ {0, 1, 2, . . . , NK} by 2D depthwise
convolution is described by Equation 1. The output is a three-dimensional tensor, where

2



Chapter 2 Improving Neural Network Models via Visual Priors

the index o ∈ {0, 1, 2, . . . , NKDx} represents a specific channel in the depth plane and
p ∈ {0, 1, 2, . . . , Hx −HK} and q ∈ {0, 1, 2, . . . , Wx −WK} are their vertical and horizontal
indices.

h̃y

k (o, p, q) = 2DDepthwiseConv (hx, Θk) (o, p, q) (1)

=
HK−1∑

u=0

WK−1∑
v=0

hx (i, p + u, q + v) · Θk (HK − u − 1, WK − v − 1)

Subsequent pointwise convolution can be seen as regular convolution with 1×1 kernel
size, recombining the channels along depth and projecting them onto a new channel space,
creating an output j-th feature map hy

j , j ∈ {0, 1, 2, . . . , DY } (Eqn. 2).

hy
j (p, q) = PointwiseConv

(
h̃y

k, αj

)
(p, q) =

NKDx−1∑
o=0

h̃y

k (o, p, q) · αj (o) (2)

The original set of parameters K is hereby replaced by Θ ∈ RNK×1×WK×HK as a set of
effective filters and α ∈ RDY ×NKDx×1×1 for the subsequent recombination of the created
feature maps. This is the main idea of the Receptive Fields Neural Network (RFNN),
which replaces the parameters of standard convolutional kernels Θ with the NK fixed
base filters θ. This makes it possible to introduce information into the network a priori
in the form of fixed spatial 2D convolutional filters for the extraction of intrinsic features,
which are then linearly combined creating effective feature maps hy at the output of the
RFNN layer (Eqn. 3).

hy = PointwiseConv (2DDepthwiseConv (hx, θ) , α) (3)

By introducing fixed filters from a certain domain, the convolutional kernels can be
treated as functions, while the network parameters are also reduced, as only α parameters
are learnt during the training process.

2.1 Methods
As a baseline for comparative evaluation of RFNN networks, we selected the methodology
and results of Jacobsen et al. [9] described below. We have reimplemented their proposed
RFNN network to reproduce the original published results and ensure correct implemen-
tation using the Pytorch [10] framework. We refer to this implementation as RFNNref .
Since the original article contains several experiments and architectural modifications, we
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Chapter 2 Improving Neural Network Models via Visual Priors

decided to concentrate on the results, where the MNIST [11] dataset was used (Figure 5 in
the original article [9]). The baseline architecture is a convolutional neural network with
three layers of receptive fields, which is used to classify the known problem of handwritten
digits into ten classes.

Fixed convolution kernels from Gaussian basis were formed in the same way for all
layers with one difference in size. In the first layer, the convolutional kernels have a
size of 11 × 11 pixels and σ = 1.5, while in the second and third layers the kernels
are identical with a size of 7 × 7 pixels with σ = 1. In each receptive fields layer, the
filtered outputs after depthwise convolution are recombined into 64 output feature maps.
Receptive fields neural networks excel when not enough data is available to use common
deep learning models. We used a limited number of training samples in the range from
300 to 60,000 samples, i.e. the whole training set. For each experiment, the entire MNIST
test set, consisting of 10,000 samples, was used to assess the accuracy of classification. In
addition to normalising data to the range < 0, 1 >, no other form of sample preprocessing
was used. The network was trained by a standard backpropagation algorithm using an
average cross-entropy loss with a mini-batch size of 25 images. An Adadelta optimizer
with decay rate ρ = 0.95, stability constant ϵ = 1e − 6 and linear learning rate decay was
applied. The initial value of the learning rate was set to lri = 5 and decreased to the
final value of lrf = 0.05 during the training, while a fixed number of epochs for individual
experiments were taken from the original authors [9]. The resulting classification accuracy
of the reference architecture RFNNref representing the average of three experiments is
depicted in Fig. 1. The original and our result lines approximately match, but there is
apparent difference in the last point for the least training samples. The variability of these
results even if the original methodology is followed may be due to various factors such
as random number generator (RNG) initial state, hardware parameters, software versions
of used frameworks, and others. These data are missing in most published studies [12],
which makes the verification of the original results more difficult. Although we managed
to achieve better results than the original authors, we noticed the shortcomings of such
an evaluation, which is common in the field of neural networks.

The results may be affected by the setting of hyperparameters and training method-
ology, randomness of selection and order of samples, as well as stochastic regularization
(e.g. dropout) during training. These effects are more pronounced with a smaller training
set, which in our case was manifested by an increase in variance. Due to the difficulty
of reproducing the original results, we tried to ensure reproducibility of our approach by
setting the methodology as follows.

4



Chapter 2 Improving Neural Network Models via Visual Priors

Figure 1: Reproduction of the original results published on the MNIST database. The average of the
three experiments is shown in green for all samples. Accuracies of the standard KNN and SVM machine
learning classifiers are given as separate curves. The graph also shows the range of results obtained by
repeating the experiment N = 300 times for the reference architecture RFNNref . For the smallest number
of training samples, the estimated distribution of all repeated experimental results shown as a violin plot
is also shown separately (best viewed in colour).

• All used frameworks were set to deterministic mode

• All parameters were initialised based on one chosen experimental seed

• To ensure variability, the selected experimental seed was used to generate a seed
vector for all runs of the experiment

To evaluate whether one neural network on a given dataset performs better than an-
other one, we originally chose the Null Hypothesis Significance Testing (NHST) methodol-
ogy, such as the Friedman and Nemenyi post-hoc tests [13, 14]. Based on recommendations
[15, 16] we abandoned it and chose a Bayesian-based comparison in the form of the Cor-
related Bayesian t-test [17]. We used an implementation of this test from the Baycomp
library [18]. The result of this test are three probabilities: the probability that the models
are practically equivalent and the probabilities that model C1 is better than model C2
and vice versa. For all tests, we chose standard 1% as the Region of Practical Equivalence
(ROPE), where with a smaller difference in the metrics of the compared models C1 and C2
as defined 1%, we consider the models as equivalent. Based on previous adjustments and
evaluations, we decided to change the methodology of the experiments. Subsequently, in
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Chapter 2 Improving Neural Network Models via Visual Priors

each experiment, all frameworks using randomness are set to the deterministic mode. We
used stratified 10-fold cross-validation repeated 10 times with a different initial seedings
(a total of 100 simulations). The same master seed was used for each experiment, so not
only the selection but also the order of the samples was maintained for all models on the
same data set. The statistical evaluation of the model in the form of a correlated Bayesian
t-test was performed on the validation part of the training set within the cross-validation.
However, a numerical evaluation was performed on the held-out test set containing the
same 10,000 samples to obtain an objective view of the real accuracy of the model. A
possible alternative is to combine the train and the test set into one dataset. We chose
not to use this procedure in order to compare the results obtained on a dedicated test set
with previous research in this area.

2.2 Results
For a valid comparison of the impact of changes in the RFNN architecture, we simplified
the reference network as much as possible. Due to the possible mutual influence of param-
eters in deep architectures, we omitted the normalization and regularization layers and
simplified the neural network to a shallow architecture with one computational RFConv
layer. Another simplification was the removal of computational layers (local response
normalization, dropout), for which we could not ensure repeatability when training on a
GPU. We kept the base and number of filters according to the original architecture. For
training, we used the same settings as in the previous experiments, except that we changed
the optimizer to AdamW using a fixed learning rate with a value of 1.10−3. For reference,
we evaluated the simplified single layer architecture RFNNL1 against the original three-
layered architecture RFNNref in the form of 10 times repeated 10-fold cross-validation
using the correlated Bayesian t-test for random selection of 300 samples. Compared to
the original architecture, the results deteriorated significantly, which was expected. For
a ROPE of 1% the probability that RFNNref is better than RFNNL1 was 99.03%, the
probability that both models are practically equivalent was 0.95% and the probability
that RFNNL1 is better than RFNNref was 0.02%.

Before making changes to the simplified architecture RFNNL1, we analysed the im-
pact of sample selection on the accuracy achieved by the created model. The setting and
methodology of the training were the same as in the previous section. We chose RFNNL1

as the reference architecture and conditioned the selection of samples by changing the
deterministic seed that affected the result. We trained again on a random selection of 300
samples and re-evaluated classification accuracies using the same methodology.

6



Chapter 2 Improving Neural Network Models via Visual Priors

Normalization in neural network architectures can help both to improve convergence
and generalisation [19]. Different types of preprocessing and normalization are introduced
to eliminate sharp differences between network parameters or extracted feature maps
[20]. This effect can be even more pronounced when using fixed filters. For this reason,
we evaluated the impact of energy normalization on the accuracy achieved. By energy
normalization we mean normalization to unit energy, where the sum of all squared k-th
filter elements θk ∈ RWK×HK is equal to one (Eqn. 4).

θnorm
k (m, n) = θk (m, n)√√√√HK−1∑

u=0

WK−1∑
v=0

θ2
k (u, v)

(4)

where m ∈ {0, 1, 2, . . . , HK} and n ∈ {0, 1, 2, . . . , WK} are their corresponding verti-
cal and horizontal indices.

The results of both experiments show that base energy normalization helped improve
classification accuracy. When using the original Gaussian derivative base, we found that
RFNNL1 (Gaussian) was better than RFNNL1 (Gaussian normalised) with a probabil-
ity of 6.75%, the probability that both models are practically equivalent was 55.06% and
the probability that RFNNL1 (Gaussian normalized) is better than RFNNL1 (Gaussian)
was 38.19%. In case of using a random base the probability that RFNNL1 (Random) is
better than RFNNL1 (Random normalized) was 21.15%, the probability that both mod-
els are practically equivalent was 49.21%. And lastly, as we expected, the probability that
RFNNL1 (Random normalized) is better than RFNNL1 (Random) was 29.64%.

In the original article [9], a specific feature of the RFNN is the Gaussian compact base,
which is used for feature extraction. The aim of this experiment was to verify whether
we can replace the given base and what effect this change will have on the achieved
classification accuracy. We again chose RFNNL1 as the reference architecture, while the
parameters and evaluation methodology remained unchanged. In each experiment, we
kept all parameters constant except for the base used with a size of 11 × 11 pixels. Since
the reference Gaussian base contains 10 filters, we selected these filters along the primary
diagonal based on a triangular selection according to Ulicny et al. [21]. We compared
the reference Gaussian derivative base (Gaussian), the orthonormal Discrete Cosine base
(DCTII), the orthonormal Discrete Hartley base (DHT), the random base with normal
distribution (RND), and the random orthonormal base (ORTHN_RND).

We evaluated neural models using a Correlated Bayesian t-test with respect to the
simplified reference architecture RFNNL1 with a Gaussian base for each model change

7



Chapter 2 Improving Neural Network Models via Visual Priors

separately. The results showed that for all tested bases the hypothesis that both compared
models are equivalent has the highest probability with the one exception of random base,
which worsened the results and had the greatest impact on achieved classification accuracy.
The probability that the RFNNL1 model of a network with a Gaussian base is better than
a model with a random base was about 47,1 %, far exceeding other results. Compared to
the other bases tested, we obtained the best results using a discrete Hartley and discrete
cosine base. In both cases, the result of the statistical test is that the models are practically
equivalent with a 51.06% and 44.77% probability, respectively.

Table 1: Results of the test classification accuracies obtained using a simplified RFNNL1 architecture
with various fixed bases of the same size trained using only 300 samples from the MNIST database.

Base
Mean

Accuracy [%]
Min

Accuracy [%]
Max

Accuracy [%]
Variance [%2]

Gaussian 89.67 86.30 91.75 1.0131
Discrete Cosine (DCTII) 90.21 88.45 91.86 0.7268
Discrete Hartley (DHT) 90.20 88.47 91.76 0.5958
Random (RND) 88.48 86.15 90.09 0.9813
Orthonormal random
(ORTHN_RND)

89.32 87.36 90.65 0.5528

2.3 Discussion
In this work we analysed the receptive field neural network (RFNN), as a promising sim-
plified model, which uses a Gaussian derivative basis inspired by the scale-space theory.
When reconstructing the original results, we identified a problem with a large variation of
the achieved test classification accuracy, especially with a small amount of training data.
We modified the training methodology to ensure repeatability and evaluated proposed
step-by-step changes in the form of a Correlated Bayesian t-test using 10 times repeated
10-fold cross-validation. Using this methodology, we created a single-layer CNN network
inspired by the RFNN architecture, whose input of computational layers is a set of 2D
fixed filters of any size and number. Subsequently, we experimentally verified that bases
other than Gaussian can be used to generate fixed filters within the created architecture.
We found that a change in base may have less of an effect on the results obtained than
retraining the network when using another seed by failing to ensure repeatability of re-
sults. We also verified the positive impact of energy normalization of used filters, which
significantly improves the results obtained, even when using a random base.

8



3CHAPTER

Localisation of Hard Exudates Based on Deep
Learning

Given the extent and severity of diabetic retinopathy, early detection and treatment
are one of the key goals of most healthcare facilities around the world [22]. Therefore,
automating the screening of patients at risk of developing this disease represents not only
an opportunity for early diagnosis, but also for reducing the direct and indirect costs of
treating and addressing the complications associated with endangered patients at a later
stage of the disease [23]. To compare the accuracy of existing methods, more than 40
databases have been created containing fundus and optical coherence tomography (OCT)
images of the retina, the vast majority of which are publicly available. However, images
in these databases are often captured by multiple sensors, markings are incomplete or
incorrect, and of the relatively large number of databases available, only a small portion
contains lesion-by-pixel annotations [24]. As a result, most research focusses on grading
diabetic retinopathy without explicit detection of individual lesions on fundus images [25].
In this work, we therefore focus on the localisation of hard exudates in retinal fundus
images with the aim of fast and robust visual pre-scanning, which can help the early
diagnosis and treatment of diabetic retinopathy. When designing the proposed method, we
focused on improving the localisation of hard exudates by preprocessing and simplifying
the problem solved by deep neural network in order to increase the overall accuracy.
Although we could analyse entire fundus images, due to computational complexity and
preservation of details, we decided to work with image patches. These were created from
the original images by cutting on patches of equal width and height with a shift of half
the size of the patch in all directions. If the image size is not divisible by the patch size,
the original image is padded with black borders to prevent the loss of information that
would occur by omitting edge patches. On the basis of the ground truth markings at
the pixel level, bounding boxes with a minimum area are subsequently created so that
the individual lesions are clearly distinguished. If the patch does not contain exudates,
it is discarded and will not be used in the training process. The remaining labelled
lesion patches are then preprocessed using offline augmentation to create the final training
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Chapter 3 Localisation of Hard Exudates Based on Deep Learning

dataset. Since patches without exudates are not used when training the deep object
detector, it is necessary to dynamically filter them out when analysing the image. In
the proposed solution, the SVM classifier performs this task. The input image is first
cut into image patches with a standard size of 224 × 224 pixels - these do not enter the
SVM classifier directly, but are fed to the input of a deep neural network with ResNet-
50 [26] architecture. Using the transfer learning approach, we applied the pre-trained
ResNet-50 model on the ImageNet [27] database as a feature extractor, which also reduces
dimensionality for the SVM classifier. As input to the SVM, we used a 1 × 1 × 2048
feature vector from the last average pooling layer obtained by traversing input 224 × 224
pixel image patches through the pre-trained ResNet-50 model. In principle, a method
other than SVM can also be used to solve this binary classification problem; in our
implementation, we used linear SVM due to the high accuracy and speed of execution,
which is also an important factor. In theory, by pre-scanning and filtering image patches
without exudates it allows the deep object detector to focus on finding and detecting
hard exudates in more detail, which manifests itself in increased accuracy. As detector,
we used a faster region-based convolutional neural network (Faster-RCNN) [28] again with
a ResNet-50 backbone architecture, which was trained only on positive samples. Faster-
RCNN, replaces the previously used selective search method by incorporating a region
proposal network (RPN), a fully convolutional network for predicting object boundaries
and concluding their probabilities at each position, directly in the unified architecture
using the attention mechanism. The RPN uses anchor boxes, pre-defined rectangular
boundaries centred at the sliding window of multiple scales and aspect ratios, which
depend on the searched objects in the image. At each location of the sliding window,
multiple region proposals are simultaneously predicted leading to compelling acceleration
and improved localisation.

3.1 Methods
To perform the experiments, we searched for a database with sufficient diversity and
accurate labels at the pixel level. We chose the e-optha-EX database [29], which con-
tains images with marked exudates and images without lesions of various resolutions. We
deal with mixed image resolutions by dividing the original fundus images into patches of
224 × 224 pixels. This size was not chosen at random, but matches the input layer size
of the ResNet-50 network, which is used for feature extraction, as well as the backbone
architecture of the Faster-RCNN object detector. Thus, we did not need to change the
resolution of the input images by resizing. Instead, the original fundus images were com-
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plemented with black pixel borders in the horizontal and vertical directions. The entire
e-optha-EX database was used in the experiments, which we first divided into images con-
taining (47 images in total) and not containing exudates (35 images in total) according
to the provided labels. Each group was then randomly divided into five approximately
equal folds for 5-fold cross-validation. The division of the 47 images containing exudates
was divided into three folds containing 9 images and two folds containing 10 images each.
Dividing the image samples without exudates was easier, where each fold contained ex-
actly 7 images. We maintained this random division by providing the same seed for the
pseudo-random number generator in all subsequent experiments. We also did this to avoid
methodological errors so that image samples from one patient would not be in the train
and test set simultaneously and also to train the Faster-RCNN detector and the SVM
classifier on the same data. By dividing the original images, we created a total of 307
image patches containing exudates. Using a shift of 112 pixels (half of the patch size) in
the horizontal and vertical directions, 882 samples were generated. To expand the dataset
even further, we created new image samples together with bounding boxes by mirroring
the original and shifted image patches along the x axis, y axis, and both axes sequentially,
creating additional 3567 samples. In this way, we created a total of 4756 colour 224 × 224
pixel image patches, which formed the final dataset. Most of these patches contained
approximately 3 or more exudates. From the original images, we generated twice the
number of image patches that did not contain exudates in the same way - these were
used only when training the SVM classifier. When generating the data, we took care to
maintain consistency according to the classification of individual images into individual
folds within 5-fold cross-validation. Image patches without exudates were used only in
the training of the SVM classifier, which is used in the task of fast image prescanning.
The SVM classifier uses extracted features from the ResNet-50 network with the use of
transfer learning, as its weights are constant and pre-trained on the ImageNet database.
The 2048-dimensional feature vector was extracted from the last average pooling layer of
the ResNet-50 network and used as input for the linear SVM classifier. In order for SVM
to be able to effectively filter out negative samples, we used the above-mentioned division
for the training, while we added 1 pure black image patch to each fold in order to improve
recognition in the marginal parts of the fundus images. The SVM classifier training was
always performed on N − 1 folds and the evaluation on the remaining fold, which was
not used during training. We maintained the same evaluation methodology when training
the Faster-RCNN detector, with the only difference that we used only patches containing
exudates in order to directly localise them.
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To select the number of clusters k and thus the number of anchor boxes, we used
the methodology proposed by Redmon et al. [30]. We performed a series of k-means
experiments, where we increased the number of clusters k and evaluated the mean IoU
for each centroid. Based on the results, we chose k = 7 with the mean IoU = 0.7374 as a
suitable compromise between computational complexity and the representation of various
bounding box shapes in the training dataset. In the training process, we minimised the
multi-part loss function proposed by the authors of the YOLO detector [31] consisting
of the sum of classification loss, confidence loss and localisation error expressed as mean
squared error (MSE). As an optimizer, we used a stochastic gradient descent with momen-
tum (SGDM) with a learning rate 3.10−4 and a default momentum decay factor of 0.9.
Due to memory requirements, we limited the size of the minibatch to 2 image patches and
trained object detector for a fixed number of 10 epochs in all experiments. We determined
this value experimentally by training a Faster-RCNN detector using an early stopping on
the first fold of a cross-validation split with a changed seed for a pseudo-random gen-
erator. We stopped training if the value of the loss function on the validation set did
not improve over 5 epochs. To obtain the highest possible sensitivity, we set the cutoff
value for the negative overlap to 0.1, which means that prediction bounding boxes with
a smaller IoU value are not considered correctly localised. To verify robustness, we used
only the original patches during training or we also added online contrast augmentation
(CA) of image patches. This was realised in the HSV colour space by a random change
in the range of 0 − 20% of the maximum hue and brightness value. We maintained the
shade of the black background by thresholding every pixel with value below 10 concur-
rently in all channels, and after the random augmentation, the image was transformed
back into the original RGB colour space. By default, the evaluation of localisation accu-
racy can be performed by counting individual correctly and incorrectly classified pixels,
also referred to as pixel-level evaluation. This evaluation leads to various contradictory
situations where some pixels are marked as true positives (intersection of ground truth
and prediction), and other pixels of the same exudate are then marked as false positives
or false negatives according to the specific situation of inaccurate overlap. Therefore, the
same authors [32, 33] decided to change the evaluation methodology and considered the
whole connected component to be marked as true positives only if it touches the ground
truth. Zhang et al. [34] noticed that good results can also be achieved by creating a large
mask that covers the entire set of ground truths. To prevent this, they proposed a hybrid
method that requires minimal overlap σ between prediction A and ground truth B, which
we used in this work and referred to as evaluation at the exudate level. This evaluation
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consisted of setting the cutoff overlap at 20% (σ = 0.2), which distinguished between
correct and incorrect exudate localisation. In this case, all exudate pixels are marked as
true positives if they overlap with the ground truth area greater than 20% . For overlaps
smaller than the threshold σ, only pixels in the intersection area (A ∩ B) are marked as
true positives (TP). Pixels in the remaining area of the prediction bounding box (A ∩ B̄),
which did not overlap with the ground truth, were subsequently marked as false positives
(FP). Vice versa, pixels in the remaining area of the ground truth (B ∩ Ā), which did not
overlap with the prediction boundary box, were marked as false negatives (FN). All other
pixels were considered true negatives (TN). If the predicted and ground-truth bounding
boxes did not overlap, the corresponding pixel designations were unambiguous, and the
standard metrics were subsequently evaluated from these values. In a clinical setting, it is
important to evaluate the probability of findings in the entire image [35]. For this reason,
we also evaluated the accuracy of localisation at the image level, using the prediction
probability of individual findings at the output of the Faster-RCNN network from the
image patches. If the maximum probability of separate findings was higher or equal to
0.9, we considered the entire image to be a positive sample. Otherwise, if the certainty of
the findings were below this value, we marked the entire image as a negative sample. To
independently evaluate the accuracy of the proposed method, it was also applied to the
DiaretDB1 [36] and Messidor [37] datasets, which were not used during the training phase,
and subsequently compared the results achieved with the previously published results of
relevant authors.

3.2 Results
Evaluation at both exudate and image level was performed in the form of 5-fold cross-
validation by comparison with the baseline Faster-RCNN with ResNet-50 architecture
without SVM pre-scanning, as well as with and without online contrast augmentation.
The results obtained on the validation set are shown in Table 2.

The results in Table 2 show that the proposed method improves overall localisation
accuracy, which is also reflected in improvements in the F1 score, positive predictive value
and specificity at both levels of evaluation. It is also clear that SVM pre-scanning results
in a significant 23.4% decrease in FPR at the exudate and approximately 23.1% reduction
at the image level compared to baseline. With the introduction of online augmentation
during training, these differences are even more prominent, reaching up to about 30.8
% at the image and even 44.7% at the exudate level. However, not all metrics point to
improvement. In the evaluation, we observed a decrease in sensitivity of 2 to 7% due to
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Table 2: Comparison of the proposed method with baseline Faster RCNN detector on e-optha-EX database
with and without contrast augmentation at the exudate and image levels. The results displayed represent
the mean value obtained on the validation set ± standard deviation.

Method Sensitivity Specificity Accuracy F1-score PPV FPR FNR

Ex
ud

at
e

le
ve

l

Faster RCNN
0.8987
± 0.0752

0.9953
± 0.0019

0.9947
± 0.0017

0.6781
± 0.0378

0.5984
± 0.0593

0.0047
± 0.0019

0.1013
± 0.0752

Faster RCNN
+ SVM

0.8805
± 0.0672

0.9964
± 0.0012

0.9957
± 0.0012

0.69262
± 0.0462

0.6236
± 0.06208

0.0036
± 0.0012

0.1195
± 0.0672

Faster RCNN
+ CA

0.8575
± 0.0492

0.9963
± 0.0016

0.9956
± 0.0014

0.6577
± 0.0103

0.6432
± 0.1023

0.0037
± 0.0016

0.1425
± 0.0492

Faster RCNN
+ CA + SVM

0.8344
± 0.0442

0.9974
± 0.0009

0.9966
± 0.0009

0.7069
± 0.0753

0.6626
± 0.0982

0.0026
± 0.0009

0.1656
± 0.0442

Im
ag

e
le

ve
l

Faster RCNN 1
0.6286
± 0.0782

0.8412
± 0.0346

0.8786
± 0.0244

0.7841
± 0.0392

0.3714
± 0.07825

0

Faster RCNN
+ SVM

1
0.7143
± 0.1010

0.8779
± 0.0418

0.9044
± 0.0299

0.8266
± 0.0508

0.2857
± 0.1010

0

Faster RCNN
+ CA

0.9578
± 0.0579

0.4857
± 0.2595

0.7566
± 0.1129

0.8222
± 0.0713

0.7254
± 0.1000

0.5143
± 0.2595

0.0422
± 0.0579

Faster RCNN
+ CA + SVM

0.9578
± 0.0579

0.7429
± 0.1863

0.8669
± 0.0768

0.8940
± 0.0550

0.8429
± 0.0839

0.2571
± 0.1863

0.0422
± 0.0579

a notable increase in the false negative rate. The contribution of the SVM classifier in
the prescanning task was also analysed by a separate evaluation. We achieved an average
84.7% classification accuracy on the validation set with a maximum of 92.2%. These
values are satisfactory, but they still leave room for improvement. The SVM pre-scanning
also brought a significant acceleration of the image evaluation process, but we did not
directly evaluate the time saved because it was not the subject of interest. The proposed
method generally achieved a more significant improvement at the image level compared
to baseline. An example is the 23.1% improvement in the F1 score, which has increased to
approximately 50% with the introduction of contrast augmentation. At the image level,
we also evaluated the Area Under The Curve (AUC), which reached an ideal value of
1 on the e-optha-EX database and high values of approximately 0.97 and 0.88 on the
DiaretDB1 and Messidor datasets, respectively. These results were obtained using the
best performing model of the Faster RCNN network from the 5-fold cross-validation with
SVM pre-scanning and contrast augmentation of the dataset during the training (Faster
RCNN + SVM + CA in Table 2). The DiaretDB1 and Messidor databases were used for
a hold-out evaluation, as they were not used during the training phase. The comparison
at the image and exudate level with the respective authors show that we have managed
to outperform the previously published results at the exudate level and the accuracy at
the image level is comparable to other methods.
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3.3 Discussion
In this work, we presented a novel method for localisation of hard exudates as symptoms
of diabetic retinopathy on fundus images using a Faster-RCNN detector with an auxiliary
SVM classifier designed for fast prescanning. Using this approach, it is possible to filter
out image samples without findings and thus enable a deeper analysis of potentially pos-
itive samples with lesions using a deep neural network. Classification into positive and
negative samples in the form of fast SVM pre-scanning was performed on the basis of
extracted feature vector from ResNet-50 network pre-trained on the ImageNet database.
The identification and localisation of hard exudates was based on a Faster-RCNN detector
with the same architecture and was trained only on positive samples containing lesions.
In the experiments, we tested four variants of the proposed method by comparison with
the baseline architecture without the use of SVM pre-scanning and with and without
contrast augmentation of the dataset. We experimentally verified the accuracy of the
proposed method using five-fold cross-validation at two levels of evaluation: exudate and
image level. Subsequently, we compared the achieved results with the authors of relevant
articles dealing with the issue of localisation of hard exudates in fundus images. When
evaluating the results at the exudate level, we recorded a 29.7% decrease in the false pos-
itive rate compared to the baseline at the cost of an increase of approximately 16.2% in
the false negative rate. At the image level, we obtained even better results, namely, a 50%
decrease in false negative rate without an obvious increase in false negatives. Although
this method reduces sensitivity due to an increase in false negatives, these results may
be acceptable due to a significant improvement in image-level detection, which is more
emphasised in clinical practise. In terms of localisation accuracy, our approach outper-
formed or achieved comparable results with other methods, even in holdout evaluations
on the DiaretDB1 and Messidor databases, which were not used during the training. Our
analysis shows that prescanning images using SVM prior to deep learning detector can
help improve the overall localisation accuracy achieved, as well as speed up the process
of evaluating individual images, as indicated by the preliminary results.
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4CHAPTER

Iris Imaging in Healthcare Setting

Research in the field of iris recognition is constantly growing and has been further
accelerated by technological advances in mobile devices in recent years. Along with the
development of artificial intelligence, there is a need for robust recognition in the changing
real-world conditions, which has led to the creation of new challenging databases to cover
a wide range of noise factors and specific subareas of iris recognition. With the grow-
ing interest of the scientific community, the number of scientific publications, methods,
and datasets has naturally increased as well, which means that more effort is needed to
gain sufficient insight while researching. As this phase is often time-consuming, many
researchers have decided to create their own private database instead of using publicly
known databases or searching for available ones. There are several reasons. Due to the
sensitive nature of the data, most databases are available for download only if a licence
agreement, often requiring the signature of the legal representative of the research insti-
tution, is submitted and approved. This creates not only time but also legal constraints.
It is also common for databases to become inaccessible after a key researcher leaves for
another workplace, after a grant expires, legislation changes, after technical issues, and
many other related reasons. In the field of iris recognition, we have found that despite the
numerous freely available databases, these are often overlooked. One reason may be that
a detailed overview of available databases is still missing. Existing review articles focus
only on one selected area of iris recognition, and general surveys do not provide sufficient
detail or scope to help guide this rapidly evolving and ever changing area. Based on the
identified shortcomings, we have stipulated six research questions (RQ1-6) that we will
try to answer.

RQ 1 What databases are used in the field of iris recognition and are publicly available
to the scientific community ?

RQ 2 Which of these databases are the most popular ?

RQ 3 What are the common features of databases and how do they differ ?

RQ 4 What distinguishes popular databases and what are their common features ?
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RQ 5 Which areas of iris recognition have few or no freely available databases ?

RQ 6 What are the recommendations for creating a new iris database ?

To answer these questions, we decided to create a list of available human iris datasets
based on bibliometric research to perform statistical analysis that will help identify emerg-
ing directions and accelerate research in iris recognition and similar areas of research, as
well.

4.1 Methods
Because there is a large number of scientific articles and other resources related to iris
recognition, we have sought to select those that have the greatest impact on the scien-
tific community in terms of the number of citations. We have chosen the Web of Sci-
ence online library as an information source because it is publisher-independent and,
to our knowledge, the most well-known works in the field of iris recognition are in-
dexed there. In the Web of Science online library, we searched for keywords “recogni-
tion” and “iris”, which had to contain the articles searched and restricted to English
language only. We have further limited the search to Citation Index Expanded and
to specific areas: IMAGING SCIENCE, OPTICS, TELECOMMUNICATIONS, PHO-
TOGRAPHIC TECHNOLOGY, MATHEMATICAL COMPUTATIONAL BIOLOGY,
COMPUTER SCIENCE, AUTOMATION CONTROL SYSTEMS, MATHEMATICS, EN-
GINEERING, SCIENCE TECHNOLOGY, ROBOTICS, and OTHER TOPICS.

Based on this search, we obtained a list of 1,012 scientific publications in the field
of research, which we then further analysed. Of all articles found, 689 relevant articles
were manually selected based on text analysis and the authors of which used at least one
iris database in the experimental section. We excluded from the analysis review studies,
surveys, opinions, duplicates, and articles not related to iris recognition. An example is
the article using the well-known Fisher’s Iris data set that contains multivariate features
of three species of Iris flowers [38, 39]. Despite these exclusions, not all databases could
be directly assigned to a particular database or its version. If the analysed article used a
preliminary version of a still expanding database (e.g., CASIA-IrisV1 - V4), we assigned it
to the closest released version. In case we could not classify the database in any way due
to lack of information, we considered it private. To verify the availability of databases,
we decided to obtain all databases declared as publicly available with at least two email
requests, and in some cases by phone, if necessary. Only under the assumption that we
managed to gain access to the database, we marked it as publicly available. Finally,
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we labelled all marginal cases according to the specific situation (e.g., no information
available/no response, etc.).

4.2 Results
By a manual scan, we identified 158 datasets used in the field of iris recognition, most of
which are declared publicly available. From all identified databases, we were able to obtain
and verify access to 81 databases, which are publicly available for scientific purposes free of
charge. In addition, we have identified 6 paid databases, 7 private databases, 30 datasets
that are no longer available, and one database that is available for joint collaboration
only. Due to the sharing of intellectual property rights, we did not include this database
in the list of publicly available, but we created a separate group for it. We did not receive
a response to 33 database requests, even after resubmitting and contacting all authors
directly via email. A visual representation of the categorisation based on the availability
of the iris databases is shown in Figure 2.

Figure 2: The categorization of iris databases based on their availability.

We further analysed the spectrum in which the individual databases were captured.
The largest group consists of 102 databases captured in the near-infrared spectrum. The
39 databases captured in the visible spectrum form the second largest group and 14
databases were captured in both: near-infrared and visible spectrum simultaneously. The
other group consists of 3 databases captured in the uncommon spectrum that do not
fall into the previous categories, such as the thermal and near-ultraviolet spectrum (Fig-
ure 3). In terms of the total number of images, there are 1,257,468 images captured in
the near-infrared spectrum and 121,089 images captured in the visible spectrum in all
81 available databases (1,378,867 iris images overall). In analysing the frequency of use
of individual databases in the selected publications, we found that most authors use up
to three databases, with the use of multiple datasets declining exponentially. Further
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Figure 3: The categorization of iris databases based on the spectrum in which they were captured.

analysis showed that the multiple publicly available databases are created by only a few
specialized research teams. The largest include, in no particular order: Center for Biomet-
rics and Security Research of the Chinese Academy of Sciences (CASIA), Soft Computing
and Image Analysis Group at the University of Beira Interior (SOCIA Lab), Biometrics
and Machine Learning Group at the Warsaw University of Technology (ZBUM), Image
Analysis and Biometrics Lab at Indian Institute of Technology Jodhpur (IAB), Biometric
and Image Processing Lab at The University of Salerno via Ponte Don Melillo (BIPLab),
Computer Vision Research Laboratory at The University of Notre Dame (CVRL), Bio-
metrics and Identification Innovation Center at the West Virginia University, Biomedical
Signal Analysis Lab at The Clarkson University (biosal), The National Science Founda-
tion’s’ (NSF) Center for Identification Technology Research (CITeR), a multi-university
center, Laboratory of Biometric Recognition and Information Security Technology at the
Jilin University, Computer Vision and Pattern Recognition Unit at the Indian Statistical
Institute, and The National Institute of Standards and Technology (NIST) at the U.S.
Department of Commerce. Although many more research teams are involved in the field
of iris recognition, most of them have created only one public database, or have decided
to use a custom private database instead. This group was the most numerous and out of
all 689 analysed publications, as much as 211 authors used the custom iris database in the
experimental section. The most commonly used publicly available database is CASIA-V1
[40], although it is obsolete and its use is not recommended anymore [41]. Other very
commonly used databases are Casia-IrisV3 [42, 43], UBIRIS-V1 [44] a UBIRIS-V2 [45].
The Bath (UBIID) database [46] is also very popular, although it is currently no longer
available and is likely to be spread through internal sharing between researchers. No-
table is also the increase in research interest in mobile databases in recent years, such as
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MICHE-I [47], which indicates a change in the trend towards unconstrained iris recog-
nition. For the identified 158 datasets, we collected basic 18 pieces of data, which were
recorded in the form of a table. These include: the name of a database, information about
availability, number of subjects, number of classes, number of images per subject, total
number of images, resolution of images, year of creation, camera type, image format,
image bit depth, used sensor, environment type, number of sessions, basic information
about participants, link to the database website, brief description about the database
and the original publication describing the dataset. Although this list has a great added
value, it is obsolete by the definition, as new databases are created every month and the
existing ones could disappear practically from day to day for various reasons. Therefore,
to mitigate the effect of constant change, we have created an irisdata webpage (Available
at: https:\\irisdata.fei.stuba.sk, and http:\\irisdata.etrovub.be) on which
the entire list of identified datasets is available to the researchers and general public.

4.3 Discussion
In this chapter, we dealt with the analysis of existing human iris databases. Based on the
bibiometric review, we manually created a list of 158 databases in order to find out the
answer to 6 research questions (RQ 1-6). Based on efforts to verify individual databases
by acquiring them, we found that 81 iris databases are currently available for scientific
purposes, thus providing an answer to RQ 1. By statistical analysis of the use of individual
databases, we confirmed the results of DeMarsico et al. [48] that the CASIA-V1 database
is disproportionately more popular than other databases. In our analysis, the databases
created and maintained by the Chinese Academy of Sciences (CASIA) are among the
most used, while CASIA-V1 was referenced by 144 authors from among all 689 analyzed
publications (answering RQ 2). For each database, we collected 18 pieces of data describ-
ing basic parameters and information about the contained images, and arranged them
in tabular form. This allows to search, sort and classify diverse databases into specific
groups as needed (answering RQ 3). In a deeper analysis of the most popular databases,
we identified a few common characteristics that facilitate their extensive use by the sci-
entific community: long-term accessibility, ease of access, database size, focus and timing
of publication (answering RQ 4). Since the information websites of individual research
institutions are still under development, there is often a contradiction between older pub-
lished information in articles associated with created databases and current status, such
as invalid or broken web links. Although these errors occur naturally, making efforts to
ensure the stability of availability over the years by maintaining the same web address,
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or redirecting the user if necessary, especially with regard to older databases, has a pos-
itive impact on its usability by various research teams. Another important factor is the
restriction in terms of gaining access to the database files. Our analysis shows that the
most popular databases have less strict conditions for obtaining access to the database
for scientific purposes. They usually do not require anything other than an e-mail request
(e.g. UPOL database [49]), and even if a license agreement is required, it can be signed
directly by the requesting researcher (e.g. CASIA databases). However, this is not true
for less used, albeit very high-quality databases, which usually require: a signature of the
legal representative of the research institution (e.g. databases provided by The University
of Notre Dame). a sharing of intellectual property rights (e.g. UBIPosePr database [50]),
or fulfillment of a specific condition limiting access to the database (e.g. WVU Twins Day
Dataset [51] is only available to researchers from the United States). Another common
feature of the most used databases is a sufficiently large number of samples, which allow
to perform statistically relevant and objective experiments. Last but not least, significant
databases have brought new ideas and focus to previously unexplored areas of research,
often making a given database the first in that field (e.g. UBIRIS-V1 [44] as the first
database captured in the visible spectrum with the introduction of several noise factors).
The created list of available databases naturally resulted in the identification of various
areas that are dedicated to relatively non-standard forms of research and are not suffi-
ciently represented by the available databases. These areas include, for example: analysis
of the effects of various diseases on iris recognition, the effect of medications and drugs,
the effect of lighting and other specific external factors, post-mortem iris recognition, and
animal iris recognition. There is also a lack of databases dedicated to changing a sin-
gle parameter under controlled conditions, which is the standard approach of scientific
investigation. This often leads to inconclusive results that require further verification.
To improve the current situation, it would help if the database creators provided meta-
data for the captured images (currently, their removal is more or less standard to ensure
privacy) with detailed information not only about the sensors used, but also a precise
description of the capture protocol and overall setup (answering RQ 5). Last but not
least, recommendations for the creation of new iris databases can be directly drawn from
common features of existing popular datasets (RQ 4). In addition to ensuring simple
and reliable access to the database, providing a detailed description of the methodology
and sensing protocols together with sensor metadata, and creating a sufficient number of
samples for statistical evaluation, it is also necessary for the database to be unique and
to help research new or underrepresented areas of the iris recognition (answering RQ 6).
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Achievements and Conclusions

In this work, we dealt with the use of neural networks in biomedicine with a specific
focus on medical diagnostics. We have described the reasons for the introduction of ar-
tificial intelligence approaches in biomedicine and the possible forms of advancement of
this newly emerging scientific field. Of all new methods, the most scientific attention is
directed to deep learning approaches, which have seen tremendous progress not only in
the field of medical diagnostics, but more or less in all scientific fields. Even though deep
learning is being actively developed and is experiencing huge interest from the scientific
community, there are still unsolved problems preventing the wider deployment of created
deep neural models in everyday medical practice. Since during our studies we dealt with
several areas of research; in this work we focused on the three most significant scientific
contributions related to medical diagnostics that we managed to achieve and elaborated
on them in more detail in individual chapters of this thesis.

The chapter 2: Improving Neural Network Models via Visual Priors

• We extended the architecture of Receptive Fields Neural Networks inspired by scale-
space theory. We modified the standard architecture using the Gaussian derivative
basis so that it could use a general group of fixed filters with different shapes for
the extraction of intrinsic features. We analysed the changes of fixed convolutional
filters in shallow architectures with a limited number of training samples and eval-
uated the results in the form of a correlated Bayesian t-test. The results show that
neural models with various tested bases achieve classification accuracy comparable
to baseline and are very sensitive to normalization and sample selection. Due to the
easier visualisation and interpretation of the extracted features and high accuracy in
areas with insufficient data for the training of classical deep neural networks, these
models have the potential to be used in everyday medical diagnostics.
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The chapter 3: Localisation of Hard Exudates Based on Deep Learning

• We proposed the use of a linear Support Vector Machine classifier to accelerate and
increase localisation accuracy of hard exudates using a Faster Region-based Con-
volutional Neural Network. To increase the accuracy of object detector, we have
introduced a filtering step using the feature vector extracted from the pre-trained
ResNet-50 network in order to identify healthy samples and analyse potential find-
ings in more detail. We evaluated the impact of the introduction of fast visual
prescanning on the achieved localisation accuracy with and without contrast aug-
mentation and interpreted the results using five-fold cross validation. The results
show a significant reduction in false positive rate without a decrease in false nega-
tives for entire images and for pixel-level evaluation. Due to the acceleration and
improvement of visual detection of hard exudates in retinal fundus images, espe-
cially with paucity of training data, this method is suitable for incorporation into
several possible clinical applications.

The chapter 4: Iris Imaging in Healthcare Setting

• We provided a detailed overview of existing iris datasets created on the basis of a
bibliometric analysis of relevant articles indexed in the Web of Science online li-
brary. On the basis of the popularity of their use in individual scientific articles,
we have divided the analysed databases into categories corresponding to the subject
area of research for which they are suitable. We also described popular datasets,
their features and shortcomings, and provided recommendations for creating new
databases for future research. We also briefly described the challenges and competi-
tions related to iris recognition and non-standard forms of research in this area. To
keep the created list up to date, the irisdata web domain has been created mainly
due to the growing number of databases and rapid changes in availability. The
created overview helps researchers identify suitable databases that can accelerate
development in promising areas of research such as medical biometrics.
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