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Abstract
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Final thesis supervisor : doc. Ing. Eva Miklovičová, PhD.
Month, Year : May, 2023

Biocybernetics is a relatively new multidisciplinary scientific field offering interesting options for further
research of originally engineering approaches being applied to processes in living organisms. Therefore, this
thesis deals with the research of new mathematical, statistical, and cybernetic methods applied to biosystems
and, particularly, to the dynamics of glycemia in subjects with type 1 diabetes. The proposed new methods
address partial subproblems such as empirical modeling and system identification, optimal state estimation,
estimation and analysis of statistical models, and last but not least, model predictive control and optimal
impulsive control of glycemia. The main purpose of such advisory system is the system-based decision support
of a patient with diabetes with regard to the application of insulin therapy. The ultimate practical aim of the
advisory system is to increase overall quality of life by optimizing traditional insulin therapy in the terms of
smart bolus calculator design.

Keywords: biocybernetics, diabetes mellitus, model predictive control, insulin therapy, system identification,
parameter estimation, optimization
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Biokybernetika je relatívne nová multidisciplinárna vedná oblasť, ktorá ponúka zaujímavé možnosti pre ďalší
výskumu pôvodne výlučne inžinierskych prístupov aplikovaných na procesy prebiehajúce v živých organizmoch.
Táto práca sa preto venuje výskumu nových matematických, štatistických a kybernetických metód aplikovaných
na biosystémy a to konkrétne na dynamiku glykémie u pacientov s diabetom prvého typu. Tieto nové metódy
potom riešia jednotlivé čiastkové problémy ako je empirické modelovanie a identifikácia parametrov, optimálny
odhad stavu systému, odhad a analýza štatistických modelov a v neposlednom rade prediktívne a optimálne
impulzné riadenie glykémie. Principiálne je hlavnou úlohou takéhoto poradného systému práve systémovo
založená podpora pacienta s diabetom pri rozhodovaní v súvislosti s aplikáciou inzulínovej terapie. Konečným
praktickým cieľom poradného systému je celkové zvýšenie kvality života pacientov optimalizáciou klasickej
inzulínovej terapie v zmysle inteligentného bolus kalkulátora.

Kľúčové slová: biokybernetika, diabetes mellitus, prediktívne riadenie, inzulínová terapia, identifikácia
systémov, odhad parametrov, optimalizácia
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Introduction

Biocybernetics is a multidisciplinary field that offers wide options for applicability and new opportunities for
further research of originally engineering approaches such as mathematical modeling and control systems design
on the processes happening in living organisms, i.e. biosystems. This thesis is dedicated to the problem of the
metabolic disorder called diabetes mellitus, in particular its treatment, modeling, and finally automatic control
of glycemia in the context of the so-called artificial pancreas.

Basically, the main purpose of an advisory system is system-oriented support to decision-making in regard
to the application of insulin therapy in subjects with diabetes. This topic involves the design of new
efficient strategies to execute insulin treatment based on systems identification, model predictive control, and
optimization methods. The ultimate purpose of this advisory system is to improve the quality of life of a
diabetic subject and to enhance the efficiency of insulin dosing management in terms of improving the chosen
qualitative clinical metrics. However, this thesis also deals with many related partial sub-problems including
system identification, optimal state estimation, stochastic modeling and estimation.

Thesis goals
Medical cybernetics is a field in which, among other things, systems theory and advanced automatic control
methods are applied to the technical support of medical research and practice. An example would be the design
of automated advisory systems that evaluate data to facilitate decision making in a given domain. The aim of
the thesis is to design algorithms for a complex decision support system for the application of insulin therapy
in patients with type 1 diabetes mellitus. Partial problems include empirical modelling of glycemia dynamics,
identification of model parameters in compliance with physiology, design of model predictive control of glycemia
and design of optimal bolus calculator algorithm.

Thesis goals:

1. To analyze the state of the art in the area of modeling and control of type 1 diabetes mellitus.

2. To propose algorithms for identifying diabetes model parameters that ensure consistency with basic
physiology.

3. To propose new approaches to improve the performance and safety of predictive control of glycemia within
the framework of artificial pancreas implementation.

4. To optimize conventional insulin therapy and design a smart model-based bolus calculator.

5. To validate the proposed algorithms and methods by the means of numerical simulations and to evaluate
the achieved results.
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Chapter 1

Diabetes and its Treatment

Glucose is an essential substance that provides the required energy for cells and tissues in the human body,
and hence it is vital to maintain its blood concentration, i.e. glycemia, in a relatively narrow physiologically
acceptable interval. In a healthy subject, glycemia is autonomously governed by a complex neurohormonal
regulatory system where the pancreas plays the most significant role.

It is the hormone insulin excreted by pancreatic beta cells, which is the primary mediator maintaining
glucose homoeostasis in the organism. The specific mechanism of insulin action allows some types of cells to
absorb and consume glucose from the blood plasma, while insulin also has the ability to inhibit endogenous
glucose production.

In addition to insulin, other hormones also participate in the glycemia regulatory system. From the class
of insulin-antagonist, i.e. counterregulatory hormones, we can mention glucagon, which stimulates glucose
production in the liver, also called endogenous glucose production. This response of the human body can
ultimately be seen as a natural mechanism to prevent hypoglycemia, i.e. the state when the glycemia level is
below a certain physiologically unacceptable and safe threshold. It is worth noting that the primary source of
glucose inflow is related to food-induced carbohydrate intake and digestion.

Correctly and effectively working insulin-glucose regulatory system responses to sudden (usually meal-
related) glycemia increase by insulin release according to pancreatic beta cell function while increasing glucose
consumption by cells and tissues that are sensitive to insulin and by suppressing endogenous glucose production.
This sequence ultimately results in a lowering of glycemia and its return to normal. On the contrary, in the
case of hypoglycemia state, insulin excretion is virtually stopped while there is present glucagon release that
stimulates glucose production in the liver.

Diabetes mellitus is a relatively common metabolic disorder characterized by a persistently and chronicly
elevated glycemia level above normal values, also called hyperglycemia. In the long term, this state leads to a
wide variety of symptoms and health complications for the patient.

Based on the underlying physiological mechanisms and phenomena, we distinguish two major types of
diabetes. Type 1 diabetes can be characterized as absolute insulin deficiency. In that case, the damaged pancreas
does not produce a sufficient amount of insulin or does not produce insulin at all. This pancreatic damage is
permanent and irreversible, so patients face lifelong therapy in the form of synthetic insulin administration. In
fact, this insulin therapy is vital to maintain glycemia within the clinically acceptable interval and therefore to
slow the progression of the health complications.

1.1 Problems of Managing Diabetes and Controlling Glycemia
Maintaining glycemia within the physiologically acceptable interval is in fact a complex problem belonging
primarily to the field of system and control theory. From a cybernetic point of view, the controlled variable is
the blood glucose concentration, and the manipulated variable is the insulin administration rate. However, the
controlled system is subject to various disturbances, while meal-related carbohydrate intake can be considered
the most significant, which can actually be measured. Other disturbances include physical activity, or
psychical/mental load and stress, yet these are hard to quantify and can be rather considered random affecting
factors.

Conventional insulin therapy can be seen to be a very simple form of control. The disturbance represented by
the carbohydrate intake is usually compensated by the corresponding insulin administration, which represents
the feedforward component. Eventual fluctuations of glycemia determined by sparse finger-stick measurements
(the so-called self monitoring blood glucose) are also considered when determining the insulin dose, what can
be seen as a simple feedback control.

The invention of new minimally invasive subcutaneous glucose sensors provided opportunities for a
widespread clinical application of continuous glucose monitoring devices, which offer densely sampled real-
time data compared to finger-stick measurements. By an eventual fusions of available technologies such as the

6



insulin pump and the subcutaneous continuous glucose monitoring device together with an appropriate control
algorithm, a rather complex device called the artificial pancreas would be augmented.

The most significant engineering problems and challenges related to the development of artificial pancreas
can be stated as follows:

• lag character of insulin action dynamics
• non-negative nature of insulin administration
• non-linearity of insulin-glucose interaction
• time-varying physiological parameters
• effects of unmeasurable random disturbances
• high demands on the control performance

1.2 Conventional Insulin Therapy and Bolus Calculator
In clinical practice, a standardized approach was established to determine the suboptimal size of the insulin
bolus, called the bolus calculator. Regarding the static response of glycemia to input excitation, a diabetic
subject can be characterized with respect to both insulin administration and carbohydrate intake. The first
of these characteristics is the insulin sensitivity IS [mmol/l/U] quantifying the glycemia lowering effect of the
administered unit of insulin, whereas the carbohydrate sensitivity CS [mmol/l/g] describes the effect of unit
carbohydrate intake on increasing glycemia. Then, the helper insulin-carbohydrate parameter ICR [g/U] is
defined as

ICR = IS
CS , (1.1)

and quantifies the ability of insulin to compensate for the carbohydrate intake.
The insulin bolus is then determined as [1]

B = G−Gw

IS + CHO
ICR , (1.2)

where the insulin bolus B [U] is expressed using a dedicated insulin unit U, G [mmol/l] is the currently measured
glycemia, Gw [mmol/l] is its target value, and CHO [g] is the carbohydrate content of the meal. Insulin bolus
can be decomposed into the component compensating carbohydrate intake and the component correcting the
deviation of glycemia from the target value.

Concerning the timing of insulin bolus administration, it is more appropriate and broadly recommended to
apply the injection with a certain time advance before the corresponding carbohydrate intake [2].

In the context of this thesis, the bolus calculator represents the simplest and most widely used advisory
algorithm to support decision making in the insulin therapy application.
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Chapter 2

Physiology-Compliant Empirical Model
for Glycemia Prediction

2.1 Introduction
This chapter is focused primarily on the problem of maximizing the accuracy of glycemia prediction in type
1 diabetic subjects, particularly if linear empirical models are used. The two-input Box-Jenkins model has
been preferred since its structure reflects the actual differences in the dynamics of insulin administration and
carbohydrate intake input. Furthermore, the basal state of the subject was integrated directly into the model
structure. Since it is common to experience issues with the physiology compliance of empirical models, it was
proposed to perform the multi-step-ahead predictive identification of the zero-pole-gain representation with
applied constraints.

The main motivation for performing highly accurate predictions is to forecast severe states of hyper and
hypo glycemia as they are the cardinal risks associated with diabetes and its treatment [3]. From the cybernetic
point of view, a diabetic subject can be seen as a dynamic system with two measurable inputs and a single
output. The inputs quantify the rate of insulin administration and the rate of carbohydrate intake, whereas the
output of this system-based abstraction can be interpreted as the blood glucose concentration.

However, real diabetic patients are also subject to many unmeasurable or ambiguously affecting disturbances,
such as the effect of exercise [4] or even stress factors. Additionally, if oversimplifying modeling of the actual
complex glycemia dynamics, a significant plant-model mismatch may appear.

2.2 Proposed Model Structure
The following notation of signals is used:

• control input u(t) [U/min] - alias the rate of insulin administration

• disturbance input d(t) [g/min] - alias the rate of carbohydrate intake

• output y(t) [mmol/l] alias the blood glucose concentration

• unmeasurable random disturbances ϵ(t) with the character of zero-mean white noise

The model dynamic is defined as follows:

y(k) = Bu(z)
Au(z) u(k) + Bd(z)

Ad(z) d(k) + C(z)
D(z)ϵ(k) + y0 (2.1)

2.3 Parameters Identification
Individualization of the T1DM model should ideally be performed using exclusively passively acquired clinical
data from free-living conditions, i.e. CGM measurements and diabetic diary logs [5].

Regular bolus calculator algorithms are based on relatively simple rules [1] that utilize some clinical
parameters of the subject, particularly the insulin and the carbohydrate sensitivity (see section 1.2). Assuming
the insulin-carbohydrate ratio ICR parameter as fixed between the bolus calculations causes both inputs to be
linearly dependent, which consequently results into poor excitation quality of the input signals.

Typical diabetic signals pose another specific challenge concerning the model identification. The input
signals, i.e., the insulin administration and the carbohydrate intake do not prove to have persistent excitation
properties, or in other words: the inputs are mostly inactive during the conventional insulin therapy. Therefore,
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a novel approach based on preferential weighting of the postprandial samples is proposed. If the corresponding
weights of the postprandial samples of the identification dataset are increased, the effect of the input part of
the model can be emphasized this way.

The traditional nonpredictive identification techniques are based on the least squares minimization of the
single-step-ahead prediction error. In order to improve the prediction performance, an alternative approach is
proposed. This improvement consists of designing the cost function that involves the multi-step-ahead prediction
error for each sample of the dataset.

The cost function of the multi-step-ahead predictive identification technique can be written as:

J(θ̂) =
N∑

k=1
λn

k

{
ne∑

i=0
λe

i

[
y(k+i) − ŷ(k+i|k)

]2} (2.2)

where ne is the prediction horizon, λn
k is the weight with respect to the sample number and λe

i is the weight
with respect to the prediction horizon.

2.3.1 Identification in the Space of Zeros, Poles and Gains
Each empirical model of T1DM must meet a set of specific requirements to be considered physiologically-
compliant. In detail, the particular properties demanded of the empirical model of T1DM are the following.

1. negative static gain of the insulin submodel corresponding to the glycemia-lowering effect of the insulin
administration

2. positive static gain of the carbohydrate submodel corresponding to the glycemia-increasing effect of the
carbohydrate intake

3. positive and reasonable basal glycemia

4. stable poles of all submodels

5. minimum-phase character of both submodels

6. aperiodic transient response of both sub-models

The proposed solution is based on performing the parameter estimation in a different but equivalent space
of zeros, poles, and gains of the empirical model (2.1). It is also quite convenient that the cost function (2.2)
remains virtually untouched by this modification. The new parameter vector can be divided into sections.
Vector of poles:

θρ =
[
ρu

1 . . . ρu
nAu ρd

1 . . . ρd
n

Ad
ρϵ

1 . . . ρϵ
nD

]T
(2.3)

Vector of zeros:
θζ =

[
ζu

1 . . . ζu
nBu −1 ζd

1 . . . ζd
n

Bd −1 ζϵ
1 . . . ζϵ

nC

]T
(2.4)

Vector of gains:
θγ =

[
γu γd

]T (2.5)

Finally, the full parameter vector:
θρζγ =

[
θT

ρ θT
ζ θT

γ y0
]T (2.6)

The estimates of the sensitivities parameters are now directly related to the identified static gains:

ÎS = −γu

Ts
(2.7)

ĈS = γd

Ts
(2.8)

One can realize that the demand for a model with pure aperiodic transient response is implicitly satisfied
since the poles (2.3) are estimated as the real ones, i.e they all have zero imaginary part. Other physiology-based
criteria can be implemented as simple constraints of the parameter vector (2.6).

In order to meet the stability criterion, all poles have to lie within the unit circle.

ρu
i ∈ ⟨−0.99, 0.99⟩ ρd

i ∈ ⟨−0.99, 0.99⟩ (2.9)

The demand for a minimum phase can be applied for both submodels:

ζu
i ∈ ⟨−1, 1⟩ ζd

i ∈ ⟨−1, 1⟩ (2.10)
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Concerning the restrictions of the static gains, the physiology of insulin administration and carbohydrate intake
can be represented by the following bounds:

γu ∈ ⟨−500,−50⟩ γd ∈ ⟨10, 100⟩ (2.11)

The output constant term y0 should theoretically correspond to the glycemia when no basal insulin is being
administrated, so its bounds have to be set empirically:

y0 ∈ ⟨7, 12⟩ (2.12)

2.4 Prediction
Applying the matrix calculation method one can write the following set of equations:

x̂u
f = My

f (Au)−1 (−My
p (Au)x̂u

p + Mu
f (Bu)uf + Mu

p (Bu)up

)
(2.13)

x̂d
f = My

f (Ad)−1 (−My
p (Ad)x̂d

p + Mu
f (Bd)df + Mu

p (Bd)dp

)
(2.14)

x̂ϵ
f = My

f (D)−1 (−My
p (D)x̂ϵ

p +
(
Mu

f (C)
[
I 0

]
+
[
0 I

])
ϵ̂f + Mu

p (C)ϵ̂p

)
(2.15)

However, signal ϵ cannot be directly measured, but it is possible to use its estimate based on the error of
single-step-ahead prediction:

ϵ̂(k|k) = y(k) − ŷ(k|k−1) . (2.16)
Concerning the prediction, the future values of the unmeasurable disturbance will be considered unchanged.

ϵ̂f = ϵ̂(k|k)
[
1 1 . . . 1

]T (2.17)

The single-step-ahead prediction of the noise sub-model x̂ϵ
(k|k) has to be corrected by the current input noise

term estimate ϵ̂(k|k), hereby the measurement-corrected prediction is made:

x̂ϵ
(k|k) = hϵ

(k)
Tθϵ + ϵ̂(k|k) (2.18)

Finally, the output prediction ŷf is calculated as the sum of the partial predictions (2.13),(2.14),(2.15):

ŷf = x̂u
f + x̂d

f + x̂ϵ
f +

[
1 1 . . . 1

]T
y0 (2.19)

2.5 In-silico Experiment
To validate the presented improvements, a comprehensive in-silico experiment has been carried out.

The comprehensive nonlinear simulation model published in [6, 7, 8, 9] has been chosen. The basal glycemia
of the subject was chosen as Gb = 7 mmol/l together with the basal insulin administration rate vb = 0.01
U/min. Virtual diabetic diary data comprising multiple meal events together with the corresponding insulin
boluses have been generated. In this way, the emulation of a typical diabetic treatment routine was made
over a period of two days (48 hours). The corresponding meal-compensating insulin boluses were calculated by
the traditional bolus calculator (1.2), however, variable insulin-carbohydrate ratio was applied. The glycemia
readings were samples with the sample time Ts = 10 min and distorted by the additive measurement noise.

The starting points of the predictions were chosen to represent the postprandial periods while assuming the
prediction horizon ne = 15. For the proposed model structure (2.1) the polynomial degrees were chosen as
nAu = 5 nAd = 5 nBu = 5 nBd = 5 nC = 2 nD = 2. The weights λe were chosen as linearly decreasing
λe

i = 2− i
15 .

The generated virtual diabetic dataset used for the identification is depicted in Figure 2.1a together with
the postprandial prediction. However, the prediction performance for the validation dataset, which is shown in
Figure 2.1b, is actually the important one.

For a quick analysis of the identified model dynamics, the impulse responses are plotted in Figure 2.2.

2.6 Conclusions
The proposed linear empirical model with separate feedback dynamics for insulin administration and
carbohydrate intake input turned out to be an appropriate structure for the prediction of blood glucose
concentration in type 1 diabetic subjects. The multi-step-ahead predictive identification was proven to be
a suitable approach for estimating the parameters of prediction-oriented models. A notable contribution is the
parameter identification in the space of model zeros, poles, and gains with the consequent neat implementation
of the physiology-based constraints. Moreover, to cope with the poor excitation caused by impulse character of
the input signals, the weighting of samples related to the postprandial period was applied.
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(a) Identification dataset

(b) Validation dataset

Figure 2.1: Prediction of glycemia

(a) Insulin administration sub-model (b) Carbohydrate intake sub-model

Figure 2.2: Impulse responses of the identified model
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Chapter 3

Maximizing Performance of Linear
Model Predictive Control of Glycemia
for T1DM Subjects

3.1 Introduction
The primary objective of this chapter is the custom design of an effective, yet relatively easy-to-implement,
predictive control algorithm to maintain normoglycemia in patients with type 1 diabetes. In the introduced linear
model predictive control, the constraints were applied to the manipulated variable in order to reflect the technical
limitations of insulin pumps and the typical nonnegative nature of insulin administration. Similarly, inequalities
constraints for the controlled variable were also assumed while anticipating suppression of hypoglycemia states
during the automated insulin treatment. However, the problem of control infeasibility has emerged, especially
if one uses too tight constraints of the manipulated and the controlled variable concurrently.

In this chapter, the two-input transfer function-based discrete-time empirical model (2.1) is adopted from
chapter 2 for the MPC synthesis.

3.2 Predictive Equations
The predictive equations for the model (2.1) have to be briefly introduced before the control algorithm itself.
The output prediction can be decomposed into the free and the forced response as:

ŷf = ŷfree
f + ŷforc

f (3.1)

where ŷf [ne × 1] gets:
ŷf =

[
ŷ(k+1) ŷ(k+2) . . . ŷ(k+ne−1) ŷ(k+ne)

]T (3.2)

The forced response represents the effect of future control changes ∆uf , while the vector ŷforc
f [ne × 1] gets the

following linear form:
ŷforc

f = Hf ∆uf (3.3)

where Hf [ne × nu] is the step-response matrix. The prediction horizon representing the length of vector ŷf is
denoted ne.
The vector of future control changes ∆uf [nu × 1] is defined as:

∆uf =
[
∆u(k) ∆u(k+1) . . . ∆u(k+nu−1)

]T (3.4)

where nu is the control horizon representing the number of changes of the manipulated variable.
The following matrix equation can be formed for the prediction of control submodel:

x̂u
f = My

f (Au)−1 (−My
p (Au)x̂u

p + Mu
f (Bu)uf + Mu

p (Bu)up

)
(3.5)

Predictive equation (3.5) can be modified to analogously represent the predictions of the remaining terms
of the model (2.1).
The forced response is equal to:

ŷforc
f = Hf ∆uf = My

f (Au)−1
Mu

f (Bu)MΣ∆uf , (3.6)
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and the free response gets the following form:

ŷfree
f = My

f (Au)−1
(
−My

p (Au)x̂u
p + Mu

f (Bu)
[
1 1 . . . 1

]T
u(k) + Mu

p (Bu)up

)
+ My

f (Ad)−1 (−My
p (Ad)x̂d

p + Mu
f (Bd)df + Mu

p (Bd)dp

)
+ My

f (D)−1 (−My
p (D)x̂ϵ

p +
(
Mu

f (C)
[
I 0

]
+
[
0 I

])
ϵ̂f + Mu

p (C)ϵ̂p

) (3.7)

whence I [ne × ne] is the unit matrix, 0 [ne × 1] is the zero vector and matrix MΣ [ne × nu] is defined as lower
triangular:

MΣ =



1 0 · · · 0
1 1 · · · 0
...

...
. . .

...
1 1 · · · 1
...

...
. . .

...
1 1 · · · 1


(3.8)

The output prediction ŷf is finally determined as (2.19).

3.3 Control Algorithm
For the incremental control law, the decision vector of the future control changes ∆uf is related to the vector
of future manipulated variable uf using matrix MΣ (3.8) as:

uf =
[
1 1 . . . 1

]T
u(k−1) + MΣ∆uf (3.9)

The general cost function of the predictive control can be written as [10]:

J(∆uf ) =
ne∑

i=1
λy

i

[
ȳ(k+i) − ŷ(k+i)

]2 +
nu∑

j=1
λu

j ∆u2
(k+j−1) (3.10)

The weighting vector λu [nu×1] for penalizing the squared changes of the manipulated variable can be interpreted
as the factor affecting the aggressiveness of control:

λu =
[
λu

1 λu
2 . . . λu

nu−1 λu
nu

]T (3.11)

Vector λy [ne × 1] is the counter-weighting vector for the control error penalty:

λy =
[
0 λy

n⋆
e

λy
n⋆

e+1 . . . λy
ne−1 λy

ne

]T
, (3.12)

where 0 [1 × n⋆
e] is the zero vector and parameters n⋆

e and ne represent the beginning and the end of the
optimized prediction horizon, respectively.

The elements of reference vector ȳ [ne × 1] can be assumed equal to a constant Gt representing the target
glycemia.

ȳ =
[
ȳ(k+1) ȳ(k+2) . . . ȳ(k+ne−1) ȳ(k+ne)

]T (3.13)

The target glycemia Gt can be chosen according to the physician’s recommendation, from relatively narrow
interval 5.0 < Gt < 6.0 mmol/l.

Cost function (3.10) can be reshaped into the equivalent quadratic form:

J(∆uf ) = (ȳ − ŷf )T Λy (ȳ − ŷf ) + ∆uT
f Λu∆uf , (3.14)

where Λu [nu × nu] and Λy[ne × ne] are positive definite diagonal matrices with diagonal vectors λu (3.11) and
λy (3.12), respectively [11].

Λu = diag(λu) (3.15)
Λy = diag(λy) (3.16)

Substituting the output prediction (3.1) and the forced response (3.3) into cost function (3.14), the quadratic
form with respect to the decision variable ∆uf gets [12]:

J(∆uf ) = ∆uT
f A∆uf + 2bT∆uf + c , (3.17)
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where matrix A [nu × nu], vector b [nu × 1], and scalar c are defined as:

A = HT
f ΛyHf + Λu (3.18a)

bT = − (ȳ − ŷfree)T ΛyHf (3.18b)

c = (ȳ − ŷfree)T Λy (ȳ − ŷfree) (3.18c)

Using the receding-horizon strategy, only the first element of solution ∆uf is actually applied:

u(k) = u(k−1) +
[
1 0 . . . 0

]
∆uf (3.19)

3.3.1 Constraining the Manipulated Variable
The greatest weakness of the traditional concept of artificial pancreas is the non-negative nature of insulin
administration. In addition to the lower bound, insulin pumps also have technological limits for the maximal
insulin delivery rate, so the manipulated variable lies within the interval:

umin ≤ u ≤ umax (3.20)

The minimal infusion rate umin is zero while typical umax was reported in [13] or [14]:

umin = 0 U/min umax = 1
15 U/min (3.21)

It is desired to express the manipulated value constraints (3.20) as an equivalent system of linear inequalities
with respect to the decision vector ∆uf using matrix MΣ (3.8) as [11]:

−MΣ∆uf ≤ −
[
1 1 . . . 1

]T (
umin − u(k−1)

)
(3.22)

+ MΣ∆uf ≤ +
[
1 1 . . . 1

]T (
umax − u(k−1)

)
(3.23)

3.3.2 Constraining the Controlled Variable
Constraining the controlled variable is especially fundamental in the case of artificial pancreas, since it could be
the clue to reduce the risk of hypoglycemia during the automated insulin treatment. Formally, the controlled
variable is supposed to be within the interval:

ymin ≤ y ≤ ymax (3.24)

Relatively safe interval of glycemia is roughly:

ymin = 4.5 mmol/l ymax = 9 mmol/l (3.25)

In order to involve the constraints (3.24) in the optimization problem, the corresponding linear inequalities
system with respect to the decision vector ∆uf has to be derived. Based on the output prediction decomposition
(3.1) and the linear form of the forced response (3.3), one can write [11]:

−Hf ∆uf ≤ −
[
1 1 . . . 1

]T
ymin + ŷfree (3.26)

+Hf ∆uf ≤ +
[
1 1 . . . 1

]T
ymax − ŷfree (3.27)

3.3.3 Control Feasibility
Under some specific circumstances, particularly if applying too strict constraints concurrently, it may happen
that there is no feasible solution for all the assumed inequalities (3.22), (3.23), (3.26), (3.27). In fact, the
constraints of the manipulated variable basically cannot be violated since these are physically grounded, so it
is the controlled variable, the constraints of which have to be corrupted after all.

To this end, the proposed strategy is to detect the infeasibility during the control, generate the corresponding
alarm, and adapt the constraints of the controlled variable (3.26),(3.27) in order to recover the feasibility and
optimality of the control. For a rigorous analysis of this problem, one can harness the Farkas lemma [15].
The following linear programming problem has to be solved, and the found minimum checked for meeting the
feasibility condition defined by the Farkas lemma.

min bTy
subj. to: ATy = 0 and y ≥ 0 (3.28)

The solution of the joint linear inequalities system formed by (3.22), (3.23), (3.26), (3.27) is feasible if the
corresponding optimization problem (3.28) has a non-negative optimum i.e. if min bTy ≥ 0.
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If there is no feasible solution, then the controlled variable constraints (3.24) have to be adapted according to
Algorithm 1. This algorithm allows to choose either the upper or the lower bound of the controlled variable to
be preserved via tuning the parameters β and γ. In the case of glycemia control, due to the serious consequences
of hypoglycemia, the lower bound is much more important not to be violated, so we can choose β = 0.1 and
γ = 0.01 to reflect this demand. Hence, restoring the feasibility and correcting the constraints can be considered
non-symmetrical.

Parameters: β, γ, umax, umin
Data: ŷfree, Hf , u(k−1)
Result: ymax, ymin
begin

A =
[
−MΣ

T MΣ
T −Hf

T Hf
T]T ;

repeat

b←


−
[
1 1 . . . 1

]T (
umin − u(k−1)

)
+
[
1 1 . . . 1

]T (
umax − u(k−1)

)
−
[
1 1 . . . 1

]T
ymin + ŷfree

+
[
1 1 . . . 1

]T
ymax − ŷfree

 ;

J ← min bTy subj. to ATy = 0, y ≥ 0 ;
if J < 0 then

ymax ← ymax (1 + β) ;
ymin ← ymin (1− γ) ;

end
until J ≥ 0;

end
Algorithm 1: Controlled variable constraints adaptation

3.4 In-silico Experiment
The simulation model details were mentioned in chapter 2. The basal state was adjusted according to the basal
glycemia Gb = 7 mmol/l and the corresponding basal insulin delivery rate vb = 0.01 U/min. The virtual CGM
measurements were distorted by the additive white noise with the standard deviation σ = 0.1 mmol/l. The
experiment was designed to emulate the regular behavior of a subject with type 1 diabetes during the two-day
period.

Applying the constraints to the manipulated variable in the terms of (3.22), (3.23) with bounds (3.21) yields
the results that can be seen in Figure 3.1.

Figure 3.1: Predictive control in-silico experiment with constrained manipulated variable - meal scenario 1
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Now the constraints are also applied to the controlled variable according to equations (3.26), (3.27) with
bounds (3.25). In Figure 3.2 one can notice improved hypoglycemia management although it was apparently

Figure 3.2: Predictive control in-silico experiment with constrained manipulated and controlled variable - meal
scenario 2

achieved at the expense of higher maximal glycemia and worse performance.

3.5 Conclusions
In this chapter, the practical performance limits of the linear model predictive control were tested in such a
complex and demanding application as the artificial pancreas to maintain normoglycemia in subjects with type
1 diabetes. In contrast to the traditional unconstrained predictive control law, linear inequalities were assumed
for the constraints of the manipulated and the controlled variable. The emerging problem of control infeasibility
was rigorously addressed by exploiting the properties of the Farkas lemma. In order to recover the feasibility and
optimality of the control, an iterative algorithm was proposed to adapt the constraints of the controlled variable.
However, this adaptation can be asymmetrical, what allowed to suppress hypoglycemia while tolerating mild
hyperglycemia.
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Chapter 4

Optimal State Estimation for the
Artificial Pancreas

4.1 Introduction
The subject of this chapter is a novel approach to optimal state estimation of a discrete-time state-space model.
Accordingly, the presented algorithm can be seen as an alternative to traditional state observers such as the
prevailing Kalman filter. Our proposed solution considers the standard stochastic state-space model and the
theoretical back iteration of the state vector with the estimation based on the generalized least squares method.
Although calculating the estimate typically involves the matrix inversion operation, this can be conveniently
precomputed offline, yielding online computations reduced to single matrix-vector multiplication. According to
the theory of generalized least squares method, in order to obtain the minimum variance estimate, the covariance
matrix of the stochastic output component has to be involved, and thereby the proposed algorithm could satisfy
the criteria of the best linear unbiased estimator.

4.2 Preliminaries and Model Structure
The proposed structure of type 1 diabetes empirical model is the two-input linear discrete-time model defined
by (4.1) as the sum of two transfer functions representing the insulin administration effect and the carbohydrate
intake effect submodel.

y(k) = Bu(z)
Au(z) u(k) + Bd(z)

Ad(z) d(k) + y0 + v(k) (4.1)

The output y [mmol/l] stands for glycemia, the input u [U/min] denotes the insulin administration rate
(including the basal insulin) and d [g/min] is the signal of carbohydrate intake rate.

The input-output transfer function-based model (4.1) has to be transformed into the stochastic state-space
model defined as:

x(k+1) =Ax(k)+B

[
u(k)
d(k)

]
+w(k) y(k) =Cx(k)+v(k) (4.2)

where w is the process noise and v is the measurement noise, both representing uncorrelated stationary random
processes with zero mean. The covariance matrix of the process noise and the variance of the measurement
noise are equal to:

Q = cov (w, w) = E
{

w(k)w
T
(k)

}
(4.3)

R = var (v) = E
{

v2
(k)

}
(4.4)

Assuming the minimal state-space representation, the state vector x holds the canonical form:

x(k) =
[
xu

(k) . . . xu
(k−nAu +1) xd

(k) . . . xd
(k−n

Ad +1) y0
]T

(4.5)

States xu, xd represent the partial effect of insulin administration and carbohydrate intake, respectively. The
last state y0 implements the output bias, which was constant in the original model (4.1), whereas in the case of
state-space model (4.2) it is not affected by the state transition but only by the process noise in order to reflect
the anticipated time variability of the basal glycemia.
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The state transition matrix A for model (4.2) comprises the partial submatrices Au, Ad and the zero matrix
0 of the conforming size.

A=

Au 0 0
0 Ad 0
0 0 1

 Au/d =


−a

u/d
1 . . . −a

u/d
n

Au/d−1 −a
u/d
n

Au/d

1 . . . 0 0
...

. . .
...

...
0 . . . 1 0

 (4.6)

The input matrix is:

B =
[
Bu 0
0 Bd

]
Bu = Bd =

[
1 0 . . . 0

]T (4.7)

The output vector C comprises the coefficients of numerators:

C =
[
Cu Cd 1

]
Cu/d =

[
b

u/d
1 b

u/d
2 . . . b

u/d
n

Bu/d

]
(4.8)

4.3 Traditional State Observer Structure
The state vector (4.5) of model (4.2) is typically estimated using the traditional state observer with the following
structure:

x̂(k+1) = Ax̂(k) + B

[
u(k)
d(k)

]
+ K

[
y(k) − Cx̂(k)

]
(4.9)

where x̂ is the estimated state and K is the observer gain vector. Equation (4.9) represents the recursive
observer where the state prior estimate is corrected by the output measurement y(k).

The most widespread state estimator is the Kalman filter based on the stochastic state-space model (4.2).
The steady-state Kalman filter is basically equivalent to the state estimator (4.9), yet the gain vector K is
designed in the way the trace of the state estimate covariance matrix P(k) = cov

(
x(k)−x̂(k), x(k)−x̂(k)

)
is

minimized [16]. The steady-state covariance matrix P∞ is determined as the solution of the discrete algebraic
Riccati equation [17].

4.4 Least-Squares-Based State Estimation
The deterministic state component x̄ of the system state (4.5), i.e. the dynamics affected solely by the input
activity and undistorted by the process noise, can theoretically be separated as:

x̄(k+1) = Ax̄(k) + B

[
u(k)
d(k)

]
(4.10)

The actual state x is defined as the sum:
x(k) = x̄(k) + x̃(k) , (4.11)

where the stochastic state component x̃ represents the effect of the process noise, as well as it reflects the error
of the initial state estimate. According to the decomposed state (4.11), the output holds:

y(k) = C
(
x̄(k) + x̃(k)

)
+ v(k) = ȳ(k) + ỹ(k) + v(k) (4.12)

The dynamics of the stochastic state x̃ can be expressed as:

x̃(k+1) = Ax̃(k) + w(k) (4.13)

Based on equation (4.13), x̃ can theoretically be iterated back in time:

x̃(k−i) =A−ix̃(k)−
i∑

j=1
Aj−i−1w(k−j) (4.14)

Equations (4.12), (4.14) can be written for n recent samples in the vector form as
ỹ(k)

ỹ(k−1)
...

ỹ(k−n)

=


y(k)

y(k−1)
...

y(k−n)

−


ȳ(k)
ȳ(k−1)

...
ȳ(k−n)

=


C

CA−1

...
CA−n

x̃(k)+


v(k)

v(k−1)
...

v(k−n)

−


0 0 . . . 0
CA−1 0 . . . 0

...
...

. . .
...

CA−n CA−n+1 . . . CA−1




w(k−1)
w(k−2)

...
w(k−n)

 , (4.15)

while the summation in (4.14) has been transformed into the equivalent matrix form.
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Equation system (4.15) may get a more compact notation:

Ỹ = Y − Ȳ = Γx̃(k) + V − ΣW (4.16)

The covariance matrix of random vector V−ΣW can be derived as follows.

P = R+ ΣQΣT , (4.17)

where the covariance matrix of the joint process noise vector W is:

Q = cov (W,W) = E
{
WWT} =

Q 0 . . . 0
...

...
. . .

...
0 0 . . . Q

 (4.18)

The joint measurements noise vector V is uncorrelated so its covariance matrix is diagonal:

R = cov (V,V) = E
{
VVT} = RI (4.19)

Equation system (4.16) can be solved for x̃(k) in the terms of generalized least squares method [18], while
the corresponding quadratic cost function gets:

J(ˆ̃x(k)) = 1
2
(
Y − Ȳ − Γˆ̃x(k)

)T P−1 (Y − Ȳ − Γˆ̃x(k)
)

, (4.20)

where P denotes the covariance matrix of the combined noise vector V−ΣW as derived in (4.17).
In order to satisfy the optimality condition ∇ˆ̃x(k)

J(ˆ̃x(k)) = 0, the state estimate ˆ̃x(k) must be equal to:

ˆ̃x(k) =
(
ΓTP−1Γ

)−1 ΓTP−1 (Y − Ȳ) (4.21)

It is also convenient that the matrix inverses as well as the remaining matrix multiplications in (4.21) can be
fully pre-computed offline, thus the state estimation reduces to simple multiplication:

Ω =
(
ΓTP−1Γ

)−1 ΓTP−1 → ˆ̃x(k) = Ω
(
Y − Ȳ

)
(4.22)

Finally, the true state estimate x̂(k) can be calculated as defined in (4.11).

4.5 Simulation Experiment
The first part of the experiment was designed to emulate the typical behavior of a diabetic patient during
the two-day period while subjected to multiple meal disturbances with various carbohydrates content and the
application of standard insulin treatment. The second part of the experiment concerns the fully automatic
insulin dosing managed by the artificial pancreas control algorithm.

The orders of empirical model (4.1) were chosen as nAu = nBu = 4 and nAd = nBd = 3. The prediction
horizon was equal to ne = 15 while the sample time of the virtual continuous glucose monitoring readings was
Ts = 10 min. The statistical properties of the measurement and the process noise, represented by the variance
(4.4) and the covariance matrix (4.3), were empirically guessed as:

Q=diag
(
1 0 . . . 0 0.2 0 . . . 0 0.5

)
×10−2 R=0.01 (4.23)

Finally, the number of past output measurements n for the optimal state estimator (4.21) was chosen as
n=30.

4.6 Conclusions
The chapter presented a novel state estimator based on the generalized least squares method, which can be seen
as an alternative to commonly used Kalman filter. The most significant contribution of this chapter was the
derivation of the optimal state estimator for the linear stochastic state-space model, featuring the theoretical
back iteration of the state vector and separation of the deterministic state component. Thanks to the generalized
least squares method, the variance of the state estimate could be minimized, and thus the proposed algorithm
satisfied the criteria of the best linear unbiased estimator. In order to reduce the on-line computational load,
the algorithm was designed in the way that the corresponding matrix inversion was separated and precalculated,
ultimately resulting in a single matrix-vector multiplication required to be performed at each iteration in real
time.
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Figure 4.1: Glycemia prediction with the Kalman filter and the proposed optimal state estimator (marked by
∗)

Figure 4.2: Glycemia predictive control with the Kalman filter and the proposed optimal state estimator (marked
by ∗)
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Chapter 5

Predicting the Output Error of the
Suboptimal State Observer to Improve
the Control Performance of the
MPC-Based Artificial Pancreas

5.1 Introduction
The single step-ahead prediction error of the model output is typically used to correct the state estimate in the
traditional state observer while exploiting the new measurement of the system output. However, its dynamics
and statistical properties can be further studied, and be even exploited in other useful ways.

The widely used state estimators, such as the Kalman filter [16], are algorithms based on the prior state
prediction and correction by the new output measurement. It means that the estimated state is corrected
according to the error of the model single step-ahead output prediction calculated at each iteration. It is known
from the theory of Kalman filtering that for an optimal filter, the sequence of the output error of the state
observer (abbr. OESO), which is also called the innovation sequence, has the properties of Gaussian white
noise. However, for a suboptimal filter, the innovation sequence is correlated [19, 20] and thus can be predicted.

The main motivation for studying the dynamics of the output error of the suboptimal state observer is to
predict it in real time and correct the predictions of the output variable accordingly, yet the ultimate aim is to
involve it in the model predictive control in order to improve the control performance.

5.2 Model Structure and Preliminaries
Discrete-time stochastic state-space empirical model of glycemia dynamics in subjects with type 1 diabetes as
postulated in chapter 4 will be adopted. The model is defined by equations (4.2), (4.6), (4.7), (4.8), with the
state vector (4.5) and the noise model (4.3), (4.4).

Consider that the process noise w in model (4.2) represents the effect of the input uncertainties, so one can
write

w(k) =
[
γ(k) 0 . . . 0 δ(k) 0 . . . 0

]T
. (5.1)

The first random input γ(k) ∼ N
(
0, σ2

γ

)
reflects various unmeasurable disturbances, including physiological

changes in insulin absorption and action. The second random input δ(k)∼N
(
0, σ2

δ

)
represents the uncertainty

of the meal announcing.
Since all stochastic terms in (4.2) were defined as uncorrelated stationary random processes with zero mean,

the covariance matrix Q of the process noise (5.1) and the variance of the measurement noise R are equal to

Q = cov (w, w) = E
{

w(k)w
T
(k)

}
= diag

(
σ2

γ 0 . . . 0 σ2
δ 0 . . . 0

)
,

(5.2)

R = var (v) = E
{

v2
(k)

}
. (5.3)

The state vector x (4.5) of the n-th order model (4.2) is usually estimated using the state observer (4.9).
The state estimate residual e will be defined as

e(k) = x(k)−x̂(k) . (5.4)
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The output residual ϵ can be seen as the error of the single step-ahead prediction

ϵ(k) = y(k) − Cx̂(k) . (5.5)

5.3 Dynamics of the State Observer Output Error
The dynamics of the output residual ϵ holds

ϵ(k) = C (zI−A+KC)−1 [
w(k)−Kv(k)

]
. (5.6)

Equation (5.6) implies that the dynamics of the OESO in the case of suboptimal estimator is represented by
a stochastic multiple-input single-output system. One may realize that the term C (zI−A+KC)−1 results in
a row vector of rational functions pi(z)

s(z) with the common denominator s(z) as the characteristic polynomial of
this system. This consideration yields the following transfer function model of (5.6)

ϵ(k) =
[

p1(z)
s(z)

p2(z)
s(z) . . . pn(z)

s(z)

] [
w(k)−Kv(k)

]
, (5.7)

where the characteristic polynomial s(z) equals to

s(z) = det (zI−A+KC) . (5.8)

If Q is the covariance matrix of the process noise according to (5.2), then w(k) can be written as

w(k) =
(√
Q 0

)
η(k) , (5.9)

where η [n + 1×1] is the vector of uncorrelated noise inputs with the unit variance i.e. cov(η,η)=I

η(k) =
[
η1(k) η2(k) . . . ηn(k) ηn+1(k)

]T
, (5.10)

and
√
Q is the Cholesky decomposition satisfying Q=

√
Q
(√
Q
)T [21]. Similarly, the measurement noise v(k)

can be replaced by
v(k) =

(
0T

√
R
)
η(k) , (5.11)

where R is the variance of the measurement noise according to (5.3).
Finally, the model (5.7) can be generalized as the sum of n+1 ARMA models by substituting w(k) in the

terms of (5.9) and v(k) from (5.11) as

ϵ(k) =
[

p1(z)
s(z)

p2(z)
s(z) . . . pn(z)

s(z)

] [(√
Q 0

)
−K

(
0T

√
R
)]

η(k)

=
[

r1(z)
s(z)

r2(z)
s(z) . . . rn+1(z)

s(z)

]
η(k)

=
n+1∑
i=1

ri(z)
s(z) ηi(k) .

(5.12)

Since the process noise vector (5.1) has only two components and the covariance (5.2), the model (5.12) can be
reduced to

ϵ(k) = p1(z)
s(z) σγη1(k)+ pnu+1(z)

s(z) σδηnu+1(k)−
∑n

i=1 Kipi(z)
s(z)

√
Rηn+1(k) . (5.13)

However, the structure (5.12) cannot be directly used to predict the OESO, since the random input vector η as
well as the partial outputs ri(z)

s(z) are unmeasurable in practice. Due to the aforementioned reasons, two reduced
single-input single-output stochastic model structures, particularly the autoregressive and the moving average
model, will be considered.

5.4 Autoregressive Model
In this section, the dynamics of the OESO (5.12) will be approximated by the single-input single-output
autoregressive model defined as

ϵ(k) = 1
q(z)η(k) , (5.14)

where η∼N
(
0, σ2

η

)
is a random process with the properties of white noise signal. The polynomial q(z) of this

nq-th order model gets
q(z) = 1 + q1z−1 + q2z−2 + . . . qnq

z−nq . (5.15)
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The equivalent difference equation of model (5.14) holds

ϵ(k) = η(k) −
nq∑

i=1
qiϵ(k−i) . (5.16)

The parameter vector q can be estimated as q̂ in a straightforward way using the least squares method with
the optimal parameter estimate determined analytically as [22].

For model (5.14), the explicit prediction formula can be derived based on the difference equation (5.16).
The future values of the white noise input are unknown, so assuming that its statistically unbiased prediction
is zero i.e. E

{
η(k+i)

}
=0, the predictive form for the prediction horizon ne gets

ϵ̂f = −M ϵ
f (q)−1

M ϵ
p(q)ϵp , (5.17)

where the vectors ϵp and ϵ̂f are defined as

ϵp =
[
ϵ(k) ϵ(k−1) ϵ(k−2) . . . ϵ(k−nq+1)

]T
, (5.18)

ϵ̂f =
[
ϵ̂(k+1) ϵ̂(k+2) ϵ̂(k+3) . . . ϵ̂(k+ne)

]T
, (5.19)

and the matrices M ϵ
f , M ϵ

p comprise the elements of vector q.

M ϵ
f (q) =



1 0 · · · 0 · · · 0
q1 1 · · · 0 · · · 0
...

...
. . .

...
. . .

...
qnq

qnq−1 · · · 1 · · · 0
...

...
. . .

...
. . .

...
0 0 · · · qnq

· · · 1


(5.20)

M ϵ
p(q) =


q1 q2 · · · qnq−1 qnq

q2 q3 · · · qnq
0

...
...

. . .
...

...
qnq

0 · · · 0 0

 (5.21)

Since the noise input in (5.14) is unmeasurable, by reshaping equation (5.16), signal η(k) can be estimated as

η̂(k) = ϵ(k) +
nq∑

i=1
qiϵ(k−i) . (5.22)

5.5 Moving Average Model
In this section, the analytical stochastic model of the OESO (5.12) is approximated by the moving average
structure

ϵ(k) = g(z)η(k) , (5.23)

where η ∼N
(
0, σ2

η

)
is the white noise input and ϵ represents the colored noise. The polynomial g(z) in the

ng-th order model (5.23) can be unwind as

g(z) = 1 + g1z−1 + g2z−2 + . . . gng
z−ng . (5.24)

Difference equation of model (5.23) can be written as

ϵ(k) = η(k) +
ng∑
i=1

giη(k−i) . (5.25)

The parameter vector representing the coefficients of the model impulse response gi gets

g =
[
g1 g2 . . . gng

]T
. (5.26)

It is well known that estimating the parameters of moving average model is more difficult than estimating
the autoregressive model [23]. Therefore, to estimate the coefficient vector (5.26) using only the available signal
ϵ and the assumption that the input has the properties of white noise, the two-step Durbin’s method [24, 23] is
adopted.
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Assuming that the statistically unbiased prediction of the input zero-mean white noise is zero, the predictive
form of the moving average model (5.23) can be derived according to the difference equation (5.25) as

ϵ̂f = Mη
p (g)η̂p , (5.27)

where matrix Mη
p is formed by the elements of vector g defined by (5.26) such that

Mη
p (g) =



g1 g2 · · · gng−1 gng

g2 g3 · · · gng
0

...
...

. . .
...

...
gng

0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 0


, (5.28)

and vector η̂p comprises the estimated past values of the noise input

η̂p =
[
η̂(k) η̂(k−1) η̂(k−2) . . . η̂(k−ng+1)

]T
. (5.29)

In practice, the input noise signal η cannot be measured, so it has to be estimated based on the inverse filtering
of the output signal ϵ according to the difference equation (5.25) as

η̂(k) = ϵ(k) −
ng∑
i=1

giη̂(k−i) . (5.30)

The corrected prediction of the output y of the state-space model (4.2) gets

ŷ(k+i) = Cx̂(k+i) + ϵ̂(k+i) . (5.31)

Notice that in (5.31), the predicted output error ϵ has been taken into account by correcting the output prediction
ŷ.

5.6 Experimental Setup
The glycemia response for this experiment was obtained by in-silico approach using the complex physiology-
based nonlinear simulation model that was described in [6, 7] and the references therein.

The orders of empirical model (4.2) were chosen as nAu =nAd =4, so the overall order is n=8. The prediction
horizon was ne =15, while the sample time was chosen as Ts =10 min. The variance of the measurement noise
(5.3) and the variances of the process noise (5.2) were determined empirically as

R=0.01 σ2
γ =0.01 σ2

δ =0.2 . (5.32)

Concerning the tuning of the proposed empirical models of the OESO, the order of the autoregressive model
(5.14) was set as nq = 4, whereas the order of the moving average model (5.23) was chosen as ng = 12.

The next comparison concerns the practical impact of correcting the output prediction by the predicted
OESO. In Figure 5.1 one can see the uncorrected prediction of glycemia (Ĝ), as well as the predictions that
involved the corrections by the autoregressive (ĜAR) and the moving average (ĜMA) model.

The last part of the experiment is focused on the model predictive control of glycemia, where a positive
effect of the proposed predictors on the control performance is anticipated. Figure 5.2 shows a visibly improved
control performance characterized by a tighter control with reduced maximal and minimal observed glycemia.

5.7 Conclusions
This chapter stressed that the output error of the state observer in the case of a suboptimal state estimations can
be effectively predicted and used to correct the output prediction and thus ultimately improve the performance
of the model predictive control. We obtained theoretical results demonstrating that the dynamics of the output
error of the state observer is analytically described as the sum of ARMA models, while this full structure can be
approximated by simple autoregressive and moving average models in practice. Using these reduced predictors
resulted in improved accuracy of the output variable prediction, as well as in a better performance of the model
predictive control. It can be concluded that the actual effect of the proposed strategy depends primarily on the
uncertainty of the process noise model.
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Figure 5.1: Prediction of glycemia G(t) without the OESO compensation Ĝ compared to using the autoregressive
model ĜAR and the moving average model ĜMA

Figure 5.2: Predictive control of glycemia without the OESO compensation G(t) compared to using the
autoregressive model GAR(t) and the moving average model GMA(t)
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Chapter 6

Estimation of Process Noise Variances
from the Measured Output Sequence
with Application to the Empirical
Model of Type 1 Diabetes

6.1 Introduction
This chapter presents a novel method for estimating a priori unknown variances of the process noise affecting
a general discrete-time stochastic state-space model under the assumption that the elements of the process
noise vector are not correlated. To evaluate the proposed method in practice, only the system model and a
sufficiently long sequence of output measurements are required, so there is no need for the system state to be
measured or the state observer to be involved. In detail, the design of the method is based on the autocorrelation
function (abbr. ACF) of the stochastic output component, which is used to form the equivalent linear regression
system with respect to the unknown vector of the process noise variances. Since the data-based estimate of the
autocorrelation function has to be treated as uncertain and correlated, the generalized least squares method is
proposed to solve the derived linear regression system, yielding an unbiased estimate with minimal variance.

6.2 Preliminaries
The basic preliminary is the following n-th order stochastic state-space model in the two-input single-output
form

x(k+1) = Ax(k) + B

[
u(k)
d(k)

]
+ w(k) (6.1a)

y(k) = Cx(k) + v(k) , (6.1b)

where x∈Rn×1 is the state vector, y∈R represents the output, whereas u∈R is the control input and d∈R
is the disturbance input. Vector w ∈ Rn×1 represents the process noise and v ∈ R is the measurement noise.
Matrix A∈Rn×n is the state transition matrix, B∈Rn×2 is the input matrix and C∈R1×n is the output vector.

Assume that the mean values of the process noise and the measurement noise are zero, so one can write

E
{

w(k)
}

= 0 (6.2)
E
{

v(k)
}

= 0 . (6.3)

The positive semidefinite symmetrical covariance matrix Q∈Rn×n of the process noise (abbr. CMPN) and the
variance R∈R of the measurement noise are formally defined using the expectancy operator as

Q = cov
(
w(k), w(k)

)
= E

{
w(k)w

T
(k)

}
, (6.4)

R = var
(
v(k)

)
= E

{
v2

(k)

}
. (6.5)

Since the aim is to design a method for estimating the variances of the process noise, it will further be assumed
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that the CMPN Q has a diagonal structure

Q = diag (q) =


q1 0 . . . 0
0 q2 . . . 0
...

...
. . .

...
0 0 . . . qn

 , (6.6)

where q ∈ Rn×1 denotes the diagonal vector to be estimated, while its elements have to be non-negative i.e.
qi≥0 to ensure Q is positive semidefinite.

Moreover, we will suppose that the process noise is uncorrelated in time, so the individual samples are
statistically independent according to (6.7).

E
{

w(k)w
T
(k+i)

}
= 0 ∀i ̸= 0 (6.7)

Also the measurement noise is assumed to be uncorrelated in time, what can be noted as

E
{

v(k)v(k+i)
}

= 0 ∀i ̸= 0 . (6.8)

The process noise-induced stochastic state and the corresponding stochastic output can be noted as

x̃(k+1) = Ax̃(k) + w(k) , (6.9a)
ỹ(k) = Cx̃(k) + v(k) . (6.9b)

The covariance matrix of the stochastic state component x̃(k) is actually essential for our concern. Dynamics
of the stochastic state component x̃(k) defined by (6.9a) can be expressed with respect to the previous samples
of the process noise while assuming zero initial state x̃(0) = 0 as

x̃(k) =
k∑

i=1
Ak−iw(i−1) . (6.10)

The covariance matrix of the stochastic state component x̃(k) can be derived as the expectancy

Ω = E
{

x̃(k)x̃
T
(k)

}
= lim

k→∞

k∑
i=0

AiQAiT
. (6.11)

In general, the ACF of a stationary continuous-time stochastic signal z(t) is defined by the expectancy
[25, 26]:

Rzz(τ) = E {z(t + τ)z(t)} , (6.12)

where τ ∈R is the lag argument.
The discrete-time equivalent of (6.12), assuming the sampled signal z(k) =z(kTs), gets

Rzz(nTs) = E
{

z(k+n)z(k)
}

, (6.13)

where n∈N is the integer lag argument and Ts is the sample time.
The ACF of the stochastic output component ỹ will be derived according to (6.9b) and (6.13) as

Rỹỹ(nTs)=CE
{

x̃(k+n)x̃
T
(k)

}
CT+E

{
v(k)v(k+n)

}
=
{

CΩCT +R n = 0
CAnΩCT n ̸= 0

. (6.14)

6.3 Estimating the Variances of the Process Noise
Substituting different values of lag n = 0, 1, 2 . . . P into the ACF (6.14) while assuming the covariance matrix
Ω of the stochastic state as derived in (6.11), the equation system can be formed as

∑∞
i=0
((

CAi
)
⊙
(
CAi

))∑∞
i=0
((

CAi+1)⊙ (CAi
))∑∞

i=0
((

CAi+2)⊙ (CAi
))

...∑∞
i=0
((

CAi+P
)
⊙
(
CAi

))




q1
q2
q3
...

qn

 =


Rỹỹ(0)−R

Rỹỹ(Ts)
Rỹỹ(2Ts)

...
Rỹỹ(PTs)

 , (6.15)
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where ⊙ denotes the Schur (element-wise) vector product.
The shorthand notation will be used for equation system (6.15)

Γq = Rỹỹ , (6.16)

where matrix Γ∈RP +1×n and vector Rỹỹ ∈RP +1×1. Note that for the calculation of each row in (6.15), the
infinite summation has to be truncated to a finite one.

Suppose that in practice, the ACF Rỹỹ(nTs) is estimated as R̂ỹỹ(nTs) from the available experimental data.
The data-based estimate of (6.13), assuming the ergodicity property and a finite number of samples N , can be
obtained as [25]

R̂zz(nTs) = 1
N − n

N−n∑
i=1

z(i)z(i+n) , (6.17)

where the lag argument must satisfy n < N .
Introducing the uncertainty of the ACF estimate as the random variable en =R̂ỹỹ(nTs)−Rỹỹ(nTs), the linear

equation system (6.15) becomes the linear regression system

∑∞
i=0
((

CAi
)
⊙
(
CAi

))∑∞
i=0
((

CAi+1)⊙ (CAi
))∑∞

i=0
((

CAi+2)⊙ (CAi
))

...∑∞
i=0
((

CAi+P
)
⊙
(
CAi

))




q1
q2
q3
...

qn

 =


R̂ỹỹ(0)−R

R̂ỹỹ(Ts)
R̂ỹỹ(2Ts)

...
R̂ỹỹ(PTs)

−


e0
e1
e2
...

eP

 . (6.18)

The shorthand notation
Γq = R̂ỹỹ − e (6.19)

will be used for (6.18)
To solve the linear regression system (6.19) and thus estimate the vector q, the generalized least squares

method will be used. The corresponding cost function with respect to the estimated vector q̂ gets [18, 27, 28]

J(q̂)= 1
2

(
R̂ỹỹ−Γq̂

)T
P−1

(
R̂ỹỹ−Γq̂

)
, (6.20)

where P is the covariance matrix of the random vector e

P = cov (e, e) = cov
(

R̂ỹỹ, R̂ỹỹ

)
, (6.21)

which can also be interpreted as the covariance matrix of the ACF estimate vector R̂ỹỹ.
The optimal parameter estimate minimizing the cost function (6.20) of the generalized least squares method

can be obtained in the closed form as [18, 27, 28]

q̂ =
(
ΓTP−1Γ

)−1 ΓTP−1R̂ỹỹ . (6.22)

The estimate can be proven as unbiased by taking the expectancy operator to (6.22) while substituting R̂ỹỹ =
Γq+e according to (6.19), what results in

E {q̂}=q . (6.23)

The covariance matrix of the estimate q̂ based on equation (6.22) can be derived as [18, 27]

cov (q̂, q̂) = E
{

(q̂ − q) (q̂ − q)T
}

=
(
ΓTP−1Γ

)−1
. (6.24)

Thanks to the generalized least squares method approach applied to the regression problem (6.19), the
variances of the estimate can be considered minimal [18, 28].

The m-th row element and the n-th column element of this covariance matrix can be derived as

Pmn =

 1
(N−m) (N−n)

N−m∑
i=1

N−n∑
j=1

E
{

z(i)z(i+m)z(j)z(j+n)
}−Rzz (mTs) Rzz (nTs) . (6.25)

Moreover, the ergodicity property allows one to assume that the expectancy E
{

z(i)z(i+m)z(j)z(j+n)
}

in (6.25)
is equivalent to

E
{

z(i)z(i+m)z(j)z(j+n)
}

= E
{

z(i+q)z(i+m+q)z(j+q)z(j+n+q)
}
∀q∈Z . (6.26)

Consider the third-order ACF Rzzzz (p, q, r) as the following statistics [29, 30]

Rzzzz (p, q, r)=E
{

z(i)z(i+p)z(i+q)z(i+r)
}

. (6.27)
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However, the analytical form (6.25) and the expectancy (6.27) are infeasible in practice since the ACFs
Rỹỹ(mTs), Rỹỹ(nTs), Rỹỹỹỹ (p, q, r) cannot be determined without the prior knowledge of the process noise
model parameters. Therefore, the data-based estimates of the corresponding statistics have to be used instead.
The first-order ACFs are simply approximated as R̂ỹỹ(mTs), R̂ỹỹ(nTs) according to (6.17), whereas the third-
order ACFs (6.27) have to be estimated as

R̂zzzz (p, q, r) = 1
N −max(p, q, r)

N−max(p,q,r)∑
i=1

z(i)z(i+p)z(i+q)z(i+r) . (6.28)

6.4 Simulation Experiment
In this section, virtual diabetic data will be used to estimate the variances of the process noise in a stochastic
state-space empirical model of glycemia dynamics.

First, the linear input-output model (4.1) based on discrete-time transfer functions was identified pursuing
the strategy presented in chapter 2, while the model orders were chosen as nAu =nBu =nAd =nBd =3 implying
the overall model order n=6.

The deterministic nonlinear simulation model that was used to obtain the sequence of the virtual glycemia
measurements was subject to input uncertainties, in particular the uncertainty in the insulin administration
and the carbohydrate intake.

The variance R of the measurement noise was chosen with regard to the properties of the continuous glucose
monitoring sensors as R=0.005. The duration of the experiment was 30 days, implying the number of samples
N =4320 if the sample time was Ts =10 min.

The estimate of the ACF R̂ỹỹ(nTs) based on the sequence was determined according to equation (6.17).
Estimating the process noise variances vector q according to (6.22) yields

q̂ =
[
0.0155 0.0055 0.0003 0.0092 0.0069 0.0020

]T
. (6.29)

6.5 Conclusions
This chapter presented a novel approach to estimation of a priori unknown variances of the process noise in
the general stochastic state-space model. In a nutshell, the original contribution to the state of the art is an
estimation method based on the ACF of the stochastic output component, while the estimate of the process
noise variances is obtained in terms of the linear regression and the generalized least squares method. The
essential part of the presented mathematical rigor was the analysis of the statistical properties of the ACF
estimate, resulting in the formulation of the covariance matrix of the uncertain estimate of the autocorrelation
vector, which was actually mandatory for evaluating the generalized least squares method. The strategy of
minimizing the variances of the estimate have led to an increased estimate confidence, thus the occurrence of
invalid negative estimates could be suppressed.
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Chapter 7

Correlation Method for Identification
of a Nonparametric Model of Type 1
Diabetes

7.1 Introduction
This chapter describes a novel nonparametric identification method for estimating impulse responses of
the general two-input single-output linear system with its target application to the individualization of an
empirical model of type 1 diabetes. The proposed algorithm is based on correlation functions and the derived
generalization of the Wiener-Hopf equation for systems with two inputs, while taking the stochastic properties
of the output measurements into account. Ultimately, this approach to solving the deconvolution problem can
be seen as an alternative to widely used prediction error methods. To estimate the impulse response coefficients,
the generalized least squares method was used in order to reflect nonuniform variances and nonzero covariances
of the stochastic estimate of the cross-correlation functions, hence yielding the minimum variance estimator.
Estimate regularization strategies were also involved, while three different types of penalties were applied.

7.2 Model Structure and Preliminaries
The proposed nonparametric model defines the output y(t) as

y(t)=
∫ ∞

0
gu(λ)u(t−λ)dλ+

∫ ∞

0
gd(λ)d(t−λ)dλ+ϵ(t) , (7.1)

where gu(t) is the impulse function of the insulin administration effect, gd(t) is the impulse function of the
carbohydrate intake effect, both representing the convolution kernels.

The stochastic term ϵ(t)∼N (0, σ2
ϵ ) stands for the uncorrelated zero-mean random process, which reflects the

continuous glucose monitoring sensor noise [31, 3], as well as the effects of various unmeasurable disturbances.

7.3 Basic Algorithm
To derive the correlation-based identification method, the cross-correlation function has to be introduced. The
cross-correlation function Rxz(τ) of two general continuous-time infinite-length signals x(t), z(t) is, under the
assumption of signal ergodicity, defined by the following integral transform for the lag argument τ ∈R [26]

Rxz(τ)=E {x(t+τ)z(t)}= lim
ϑ→∞

1
2ϑ

∫ ϑ

−ϑ

x(t+τ)z(t)dt . (7.2)

Recall that if x(t)=z(t), then Rxx(τ) is called the autocorrelation function.
According to equation (7.2), the cross-correlation function Ryu(τ) can be derived as

Ryu(τ) =
∫ ∞

0
gu(λ)Ruu(τ − λ) dλ +

∫ ∞

0
gd(λ)Rdu(τ − λ) dλ + Rϵu(τ) . (7.3)

Taking analogous steps, we derived the cross-correlation function Ryd(τ) for the second input as

Ryd(τ) =
∫ ∞

0
gd(λ)Rdd(τ − λ) dλ +

∫ ∞

0
gu(λ)Rud(τ − λ) dλ + Rϵd(τ) . (7.4)
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However, for a real experiment, a finite observation time ϑ ̸= ∞ is assumed instead. Consequently, all the
cross-correlation and the autocorrelation functions in (7.3) and (7.4) have to be replaced with their estimates
R̃uu(τ), R̃dd(τ), R̃ud(τ), R̃du(τ), R̃yu(τ), R̃yd(τ) respectively [26]

R̃xz(τ) = 1
ϑ− τ

∫ ϑ−τ

0
x(t + τ)z(t) dt . (7.5)

7.4 Discrete-Time Form
For practical data-driven identification, the input and output signals are sampled uniformly with the sample
time Ts and therefore have a discrete-time nature. If x(t) is a general continuous-time signal, then we introduce
the notation x(k) =x(kTs) where k∈N represents the sample index.

Moreover, we relate the coefficients of the discrete-time impulse function gi to the continuous-time impulse
function g(t) such that

gi = g(iTs)Ts . (7.6)
Accordingly, the continuous-time model (7.1) will be transformed into the corresponding discrete-time form.
The convolution integrals in (7.1) can be approximated by the finite summations, while the infinitesimal element
dλ is replaced by Ts >0, which is being absorbed into gi according to (7.6), yielding the finite impulse response
model

y(k) =
Mu∑
i=0

gu
i u(k−i) +

Md∑
i=0

gd
i d(k−i) + ϵ(k) , (7.7)

where Mu and Md are the assumed lengths of the impulse response coefficients vectors gu and gd, respectively.
Similarly, the integral in the correlation function (7.5) can be approximated by the finite summation [25],

[26]

R̃xz(nTs) ≈ R̂xz(n) = Ts

N − n

N−n∑
k=1

x(k+n)z(k) , (7.8)

where N denotes the number of samples of the processed time series x, z and n∈Z is the integer lag argument
satisfying the condition n<N . In addition, the symmetry property

R̂xz(−n) = R̂zx(n) (7.9)

holds for (7.8) [26]. The discrete-time form of the generalized Wiener-Hopf equations (7.3) and (7.4) can be
derived as

R̂yu(n)=
Mu∑
i=0

gu
i R̂uu(n−i)+

Md∑
i=0

gd
i R̂du(n−i)+R̂ϵu(n) , (7.10)

R̂yd(n)=
Md∑
i=0

gd
i R̂dd(n−i)+

Mu∑
i=0

gu
i R̂ud(n−i)+R̂ϵd(n) , (7.11)

where n=0 . . . P is the lag argument. Note, that the maximum lag number P should satisfy the condition

P ≪ N . (7.12)

7.4.1 Statistical Properties of Cross-Correlation Functions
The cross-correlation functions R̂ϵu(n), R̂ϵd(n) in equations (7.10), (7.11) cannot be directly estimated in practice
because the noise term ϵ is unmeasurable. However, we may at least analyze the statistical properties of these
cross-correlation functions. To this end, we will introduce the random vectors ζϵu ∈ RP +1×1, ζϵd ∈ RP +1×1

comprising the theoretical R̂ϵu(n), R̂ϵd(n) for different values of the argument n as

ζϵu =
[
R̂ϵu(0) R̂ϵu(1) . . . R̂ϵu(P )

]T
, (7.13a)

ζϵd =
[
R̂ϵd(0) R̂ϵd(1) . . . R̂ϵd(P )

]T
. (7.13b)

The vectors ζϵu and ζϵd can be joint into

ζ =
[
ζϵu

ζϵd

]
. (7.14)

Taking the expectancy operator to R̂ϵu(n) in the terms of equation (7.8) yields

E
{

R̂ϵu(n)
}

= Ts

N − n
E

{
N−n∑
k=1

ϵ(k+n)u(k)

}
= Ts

N − n

N−n∑
k=1

E
{

ϵ(k+n)
}

u(k) = 0 . (7.15)
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Note, that the above property holds also for R̂ϵd(n). With regard to this finding, it can be deduced that the
mean of the vector ζ defined by (7.14) is the zero vector, hence E {ζ}=0.

The covariance matrix Q∈R2(P +1)×2(P +1) of the vector ζ can be divided into four block submatrices and is
defined as

Q=
(
Qϵϵuu Qϵϵud

Qϵϵdu Qϵϵdd

)
=E

{(
ζϵuζϵuT ζϵuζϵdT

ζϵdζϵuT ζϵdζϵdT

)}
(7.16)

The i-th row and the j-th column element of the covariance matrix Qϵϵud∈RP +1×P +1 can be derived according
to the correlation function estimate (7.8) and the definitions (7.13a), (7.13b) of the vectors ζϵu, ζϵd as

Qϵϵud
ij = Ts

2

(N−i) (N−j)σ2
ϵ

N−i∑
k=1

u(k)d(k+i−j) . (7.17)

In the case i<j complementary to (7.17), the formula can be obtained as

Qϵϵud
ij = Ts

2

(N−i) (N−j)σ2
ϵ

N−j∑
l=1

d(l)u(l+j−i) . (7.18)

One may notice that Qϵϵud
ji = Qϵϵdu

ij what implies that Qϵϵdu =
(
Qϵϵud

)T. The above steps can be taken to
derive the remaining submatrices Qϵϵuu, Qϵϵdd of (7.16). Since the covariance matrix (7.16) is symmetric, the
submatrices Qϵϵuu, Qϵϵdd are also symmetric, implying that Qϵϵuu

ji =Qϵϵuu
ij and Qϵϵdd

ji =Qϵϵdd
ij .

7.5 Estimate of Impulse Response Coefficients
For estimating the impulse response coefficients of the nonparametric model (7.7) we will utilize the generalized
least squares method [18], [27], [28] applied to the derived discrete-time Wiener-Hopf equations (7.10), (7.11).
The parameter vector g∈RMu+Md+2×1 can be formally noted as

g =
[
gu

gd

]
, (7.19)

where the subvectors gu∈RMu+1×1 and gd∈RMd+1×1 are defined as

gu =
[
gu

0 gu
1 gu

2 . . . gu
Mu

]T
, (7.20a)

gd =
[
gd

0 gd
1 gd

2 . . . gd
Md

]T
. (7.20b)

The cross-correlation functions R̂yu(n), R̂yd(n) from the Wiener-Hopf equations (7.10),(7.11), respectively,
have to be reshaped into the equivalent matrix form (7.21) assuming the lag argument n=0 . . . P .

R̂yu(0)
R̂yu(1)

...
R̂yu(P )
R̂yd(0)
R̂yd(1)

...
R̂yd(P )


=



R̂uu(0) R̂uu(1) . . . R̂uu(Mu) R̂du(0) R̂ud(1) . . . R̂ud(Md)
R̂uu(1) R̂uu(0) . . . R̂uu(Mu−1) R̂du(1) R̂du(0) . . . R̂ud(Md−1)

...
...

. . .
...

...
...

. . .
...

R̂uu(P ) R̂uu(P−1) . . . R̂uu(P−Mu) R̂du(P ) R̂du(P−1) . . . R̂du(P−Md)
R̂ud(0) R̂du(1) . . . R̂du(Mu) R̂dd(0) R̂dd(1) . . . R̂dd(Md)
R̂ud(1) R̂ud(0) . . . R̂du(Mu−1) R̂dd(1) R̂dd(0) . . . R̂dd(Md−1)

...
...

. . .
...

...
...

. . .
...

R̂ud(P ) R̂ud(P−1) . . . R̂ud(P−Mu) R̂dd(P ) R̂dd(P−1) . . . R̂dd(P−Md)





gu
0

gu
1
...

gu
Mu

gd
0

gd
1
...

gd
Md


+



R̂ϵu(0)
R̂ϵu(1)

...
R̂ϵu(P )
R̂ϵd(0)
R̂ϵd(1)

...
R̂ϵd(P )


(7.21)

The symmetry property (7.9) was also accounted in (7.21). Equation system (7.21) is overdetermined if condition

Mu + Md < 2P (7.22)

holds, while condition (7.12) must be satisfied as well.
The full equation system (7.21) can be written in a compact form(

R̂yu

R̂yd

)
=
(
R̂uu R̂du

R̂ud R̂dd

)(
gu

gd

)
+
(

ζϵu

ζϵd

)
, (7.23)

and even more simplified as
R̂Y = R̂U g + ζ . (7.24)
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The structures of submatrices R̂uu ∈ RP +1×Mu+1, R̂dd ∈ RP +1×Md+1, R̂ud ∈ RP +1×Mu+1, R̂du ∈ RP +1×Md+1

and vectors R̂yu ∈ RP +1×1, R̂yd ∈ RP +1×1 in (7.23), as well as matrix R̂U ∈ R2(P +1)×Mu+Md+2 and vector
R̂Y ∈R2(P +1)×1 in (7.24) result from the full equation system (7.21), while the random vectors ζϵu, ζϵd and ζ
were defined in (7.14).

For the least squares-based estimation of the impulse response coefficients vector ĝ, the residuals vector
e∈R2(P +1)×1 has to be introduced as

e=
[
eyu

eyd

]
=R̂Y−R̂U ĝ =

[
R̂yu−R̂uuĝu−R̂duĝd

R̂yd−R̂ddĝd−R̂udĝu

]
. (7.25)

The cost function of the generalized least squares method modified by adding the regularization of the estimate
is defined by the quadratic form

J(ĝ)= 1
2

[(
R̂Y−R̂U ĝ

)T
Q−1

(
R̂Y−R̂U ĝ

)
+ĝTΛĝ

]
(7.26)

with respect to the estimated parameter vector ĝ. In the above equation, Q is the covariance matrix of the
noise vector ζ and Λ∈RMu+Md+2×Mu+Md+2 is a positive-definite symmetric regularization matrix, the design
of which shall be clarified later.

According to the optimality condition ∇ĝJ(ĝ) = 0, the optimal parameter estimate ĝ can be obtained in a
closed form

ĝ =
(
R̂T

UQ−1R̂U + Λ
)−1
R̂T

UQ−1R̂Y . (7.27)

7.5.1 Estimate Regularization
Regularization is applied in order to involve some prior knowledge of the system being identified in the estimate
and also to lower the estimate variance.

The particular effect of regularization depends on the linear transform operator L∈RnΓ×Mu+Md+2 and the
diagonal scaling matrix Γ∈RnΓ×nΓ , so one can theoretically decompose the matrix Λ as [32]

ĝTΛĝ = (Lĝ)T ΓLĝ = ĝTLTΓLĝ , (7.28)

where Γ is a diagonal scaling matrix
Γ = diag(γ) . (7.29)

If multiple types of penalty are combined, the regularization matrix Λ results from the sum Λ=ΛA+ΛB +ΛC .
In the framework of this chapter, three penalties are assumed. In particular, the smoothing operation and
regularization to provide asymptotic stability and causality are applied to the estimated impulse response
coefficients vector ĝ.

7.6 Case Study
In this section, virtual diabetic data generated by a complex physiology-based simulation model will be used
for the validation of the proposed identification algorithm.

The glycemia response for this experiment was obtained in-silico, using the complex physiology-based
nonlinear simulation model, discussed in [7] and [6]. The data acquisition experiment was designed to mimic
the regular insulin treatment of a type 1 diabetic subject during the 6-day period with an overall number of
25 meals and a total carbohydrate amount of 433 g. The virtual continuous glucose monitoring readings were
sampled with the sample time Ts =20 min and the total length of the experiment was 6×60×24 min resulting
in the number of samples N =433. The glycemia measurements were distorted by the additive white noise with
the standard deviation σϵ =0.1 mmol/l.

The impulse response coefficients vectors of the model (7.7) were estimated in terms of equation (7.27). In
addition to the optimal solution ĝ, the confidence interval ĝ, ĝ for α=0.05 was determined while the obtained
results are summarized in a graphical form in Figure 7.1.

These long-term predictions will be performed for the nonparametric model (7.7) with the impulse responses
from Figure 7.1 and also for its parametric approximation can be seen in Figure 7.2.

7.7 Conclusions
This chapter presented a correlation-based identification algorithm to estimate impulse response coefficients
of the two-input linear nonparametric empirical model of type 1 diabetes. This algorithm deals with the
deconvolution problem and represents an alternative to the traditional identification techniques based on the
least squares minimization of the model single step-ahead prediction error.
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(a) Insulin administration effect submodel (b) Carbohydrate intake effect submodel

Figure 7.1: Estimated impulse response coefficients of the insulin administration effect submodel ĝu and the
carbohydrate intake effect submodel ĝd together with the corresponding confidence interval ĝ,ĝ

Figure 7.2: Prediction of the glycemia response for the validation dataset using the nonparametric model and
the approximate parametric model

The most significant original contributions include the derivation of the generalized form of the Wiener-Hopf
equation for the continuous-time model with two inputs. Based on the discrete-time equivalent of the Wiener-
Hopf equation, we featured the linear equation system that resulted in formulation of the equivalent regression
system. By solving this regression system in the least squares sense, the coefficients of impulse responses were
estimated. Moreover, three types of regularization were applied to obtain a smoother impulse response and also
to provide causality and asymptotic stability of the identified model.
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Chapter 8

Robust Online Correlation Method for
Identification of a Nonparametric
Model of Type 1 Diabetes

8.1 Introduction
The chapter presents an improved online version of the identification method for estimating the impulse
responses of the general two-input single-output linear empirical model of type 1 diabetes that allows to
adapt the model parameters to intra-subject time variability in real time. The presented theory builds on
and augments chapter 7 by providing important enhancements concerning the online parameter estimation,
recursive formulation of the essential equations, improved regularization strategies and the last, but not least,
new effective approaches to numerically solve the estimation problem. Features to robustify the estimate were
also involved, as the optimal regularization strategies based on the inverse of the covariance matrix of the true
parameter vector distribution and the inter-sample parameter drift were applied. Since the diabetic subject is
expected to be influenced by significant intra-subject time variability of the physiology-based characteristics,
there is a need to deploy online estimation algorithms that can ensure necessary adaptation of the model
parameters in real time.

8.2 Model Structure and Preliminaries
Consider the two-input single-output linear nonparametric model with the finite impulse response-based
structure (7.7). However, in contrast to chapter 7, here we consider the parameter-varying structure of the
original time-invariant model (7.7). To this end, we introduce the bracket notation ·[ ] for particular objects
in order to disambiguate their instances in time and make the notation of crucial recursive relations neater
throughout the chapter. The output of the parameter-varying model holds

y(k)[N ] =
Mu∑
i=0

gu
i [N ]u(k−i) +

Md∑
i=0

gd
i [N ]d(k−i) + ϵ(k) . (8.1)

8.2.1 Exponentially Weighted Estimate of the Cross-Correlation Function
The cross-correlation function Rxz(n) of two general discrete-time infinite-length signals x(k), z(k) is, under the
assumption of ergodicity, defined by the expectancy (7.2). It is important to note that the property

E
{

x(k+n)z(k)
}

= E
{

x(l+n)z(l)
}
∀k, l ∈ Z (8.2)

holds for (7.2) if x(k), z(k) are stationary and ergodic.
Now we introduce the sample-based exponentially weighted estimate of the cross-correlation function (7.2)

obtained by processing N available samples while assuming the forgetting factor 0<λ<1 as

R̂xz(n)[N ] = 1∑N−n
k=1 λ(N−n−k)

N−n∑
k=1

λ(N−n−k)x(k+n)z(k) , (8.3)

where n∈Z is the integer lag argument satisfying the condition n<N .
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The sum
∑N−n

k=1 λ(N−n−k) in (8.3) will be further denoted as

s(n)[N ] =
N−n∑
k=1

λ(N−n−k) . (8.4)

More importantly, the recursive formula for effective updating of summation (8.4) can be derived as

s(n)[N +1] =
N+1−n∑

k=1
λ(N+1−n−k) = λ

N−n∑
k=1

λ(N−n−k) + λ0 = λs(n)[N ] + 1 . (8.5)

Finally, considering the notation (8.4), the recursive relation to update the estimate (8.3) can be derived as

R̂xz(n)[N +1] = 1
s(n)[N +1]

(
λs(n)[N ]R̂xz(n)[N ] + x(N+1)z(N+1−n)

)
. (8.6)

8.3 Estimate of the Impulse Response Coefficients
To estimate the impulse response coefficients, the cross-correlation functions of the system output with the inputs
are essential. In this chapter, we will adopt the concerned equations (7.10),(7.11). Equations (7.10),(7.11) were
transformed into the equivalent regression system (7.21). We will further use the shorthand notation (7.23)

R̂Y = R̂U g + ζ (8.7)

for (7.24).
The vectors R̂yu∈RP +1×1, R̂yd∈RP +1×1 get

R̂yu =
[
R̂yu(0) R̂yu(1) . . . R̂yu(P )

]T
, (8.8a)

R̂yd =
[
R̂yd(0) R̂yd(1) . . . R̂yd(P )

]T
. (8.8b)

8.3.1 Statistical Properties of the Parameters
In order to reflect the presence of inter-subject parametric variability typical for the diabetic patient population,
we will assume that the actual parameter vector g follows the multivariate normal distribution. Therefore, the
mean-population parameter vector gµ∈RMu+Md+2×1 will be defined as

gµ = E {g} . (8.9)

The covariance matrix Ψ ∈ RMu+Md+2×Mu+Md+2, representing the statistical model of the inter-subject
parametric variability, will be defined as

Ψ = cov (g, g) = E
{

(g − E {g}) (g − E {g})T
}

. (8.10)

Furthermore, in order to reflect the presence of intra-subject parametric time variability, we will assume that
the actual parameter vector is time-varying, so the bracket notation g[i] will be used to distinguish its individual
occurrences. Therefore, the actual parameter vector can be seen as a random process, while anticipating that
its drift leads to no permanent bias, what can be noted as

E {g[i]} = g ∀i . (8.11)

According to (8.11) the expectancy

E {g[N + 1]−g[N ]}=E {g[N + 1]}−E {g[N ]}=0 . (8.12)

holds for the difference of two successive parameter vectors representing the inter-sample parameter change.
The covariance matrix Φ∈RMu+Md+2×Mu+Md+2 of the inter-sample parameter change g[N + 1]−g[N ] will be
defined as

Φ = cov (g[N + 1]− g[N ]) = E
{

(g[N + 1]− g[N ]) (g[N + 1]− g[N ])T
}

. (8.13)
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8.3.2 Generalized Least Squares Method
To solve the linear regression system (8.7) and thus estimate the parameter vector (7.19), i.e. the impulse
response coefficients of the model (8.1), the generalized least squares method [18, 27, 28] will be adopted.

The corresponding cost function customized by adding two regularization terms gets the quadratic form

J(ĝ)= 1
2

[(
R̂Y−R̂U ĝ

)T
Q−1

(
R̂Y−R̂U ĝ

)
+(ĝ − ḡ)T

αΨ−1 (ĝ − ḡ)+(ĝ − ĝ[N ])T
βΦ−1 (ĝ − ĝ[N ])

]
, (8.14)

where Q ∈ R2(P +1)×2(P +1) is the covariance matrix of the noise vector ζ, Ψ−1 (8.10) and Φ−1 (8.13) are
regularization matrices accompanied by α∈R, β ∈R as scalar scaling factors, the mean-population parameter
vector ḡ and the parameter estimate from the last sample ĝ[N ].

The optimal parameter estimate that minimizes the cost function (8.14) can be obtained in the closed form
assuming the optimality condition g(ĝ)=0 as

ĝ =
(
R̂T

UQ−1R̂U + αΨ−1 + βΦ−1
)−1 (

R̂T
UQ−1R̂Y + αΨ−1ḡ + βΦ−1ĝ[N ]

)
. (8.15)

8.3.3 Regularization Strategies
One way of involving the prior knowledge in the regularization is via the inverse Ψ−1 of the covariance matrix
(8.10) of the actual parameter vector distribution, which can be considered the “optimal” regularization matrix
[33]. Therefore the first regularization term (ĝ−ḡ)T

αΨ−1 (ĝ−ḡ) in cost function (8.14) penalizes the deviation
of the parameter estimate ĝ from the mean population value ḡ.

Recall that the online parameter estimation was proposed primarily in order to reflect the time variability of
the actual parameter vector, also referred to as intra-subject variability. Therefore, to robustify the identification
algorithm and hence prevent unwanted excessive changes of the parameter estimate throughout the iterations
due to the presence of outliers and deteriorated quality of input-output data, a dedicated regularization term
(ĝ−ĝ[N ])T

βΦ−1 (ĝ−ĝ[N ]) is considered in the cost function (8.14). This regularization strategy penalizes the
inter-sample change ĝ[N +1]−ĝ[N ] of the estimate using the inverse Φ−1 of the covariance matrix (8.13) of the
drift g[N +1] − g[N ] of the actual parameter vector. To adjust the strength of both regularization terms, the
scalar parameters α>0 and β >0 can be tuned.

8.4 Covariance Matrix of the Cross-Correlation Function Estimate
The i-th row element and the j-th column element of the submatrix Qϵϵud can be derived according to definitions
(7.13a), (7.13b) of vectors ζϵu, ζϵd as

Qϵϵud
ij [N ] = 1

s[N ](i)s[N ](j)σ2
ϵ

N−i∑
k=1

λ2(N−i−k)u(k)d(k+i−j) . (8.16)

In the case i<j complementary to (8.16), the corresponding formula can be obtained as

Qϵϵud
ij [N ] = 1

s[N ](i)s[N ](j)σ2
ϵ

N−j∑
l=1

λ2(N−j−l)d(l)u(l+j−i) . (8.17)

One may notice that Qϵϵud
ji = Qϵϵdu

ij what implies that Qϵϵdu =
(
Qϵϵud

)T. The above steps can be taken
to derive the remaining submatrices Qϵϵuu, Qϵϵdd. Since the covariance matrix is symmetric, the submatrices
Qϵϵuu, Qϵϵdd are also symmetric, implying that Qϵϵuu

ji =Qϵϵuu
ij and Qϵϵdd

ji =Qϵϵdd
ij .

Recursive relations need to be derived to effectively update the covariance matrix Q based on the new input
data, but more importantly, to update its inverse Q−1.

Suppose that the elements of covariance submatrix Qϵϵud defined ∀i ≥ j by (8.16) can be obtained from
N +1 available samples. The recursive formula can be obtained as

Qϵϵud
ij [N +1] = 1

s[N +1](i)s[N +1](j)
(
λ2s[N ](i)s[N ](j)Qϵϵud

ij [N ] + σ2
ϵ u(N+1−i)d(N+1−j)

)
. (8.18)

To derive the recursive formula for updating the inverse Q−1 of the covariance matrix Q, the Sherman–Morrison
formula [34] will be exploited.

Assuming column vectors u, v∈RN×1 and matrices D, U, V, W∈RN×N, we have the inversion lemma(
V−1DAUW−1 + V−1uvTW−1)−1 = WU−1 (A + D−1uvTU−1)−1 D−1V . (8.19)
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According to (8.19) and assuming p = D−1u, r =
(
U−1)T v and rT = vTU−1, the Sherman–Morrison formula

can be customized such that(
V−1DAUW−1 + V−1uvTW−1)−1 = WU−1A−1D−1V−WU−1 A−1D−1uvTU−1A−1

1 + vTU−1A−1D−1u D−1V . (8.20)

For the inversion problem of the covariance matrix Q, matrix A will represent the old covariance matrix Q[N ]
implying the dimension N=2(P + 1), and vectors u∈R2(P +1)×1, v∈R2(P +1)×1 have to get

v = u =
(

up

dp

)
σϵ , (8.21)

where vectors up∈RP +1×1 and dp∈RP +1×1 will be defined as

up =
[
u(N+1) u(N) u(N−1) . . . u(N+1−i) u(N+1−P )

]T
, (8.22)

dp =
[
d(N+1) d(N) d(N−1) . . . d(N+1−i) d(N+1−P )

]T
. (8.23)

Matrices D, U, V, W in (8.20) must have the diagonal structure

D = U = λ diag (s[N ]) , (8.24)
V = W = diag (s[N + 1]) = λD + I , (8.25)

where the vectors s[N ], s[N + 1] get

s[N ] =
[
s[N ](0) s[N ](1) s[N ](2) . . . s[N ](P − 1) s[N ](P )

]T
, (8.26)

s[N + 1] =
[
s[N +1](0) s[N +1](1) s[N +1](2) . . . s[N +1](P − 1) s[N +1](P )

]T
. (8.27)

Since D is diagonal, its inverse is easy to calculate.
Formula (8.5) for recursive updating the sum s[N + 1](i) can be generalized to update the whole vector

s[N +1] (8.27) as
s[N +1] = s[N ]λ + 1 , (8.28)

where 1∈RN×1 is the vector of ones.
The final formula for updating the inverse Q−1 can be derived according to (8.20) as

Q−1[N +1] = VD−1Q−1[N ]D−1V−VD−1Q−1[N ]D−1vvTD−1Q−1[N ]
1 + vTD−1Q−1[N ]D−1v D−1V . (8.29)

8.5 Simulation Experiment
To validate the design and effectiveness of the proposed robust online identification algorithm, virtual patient
diabetic data generated by a complex physiology-based simulation model will be considered. The procedure is
similar to the procedure presented in chapter 7.

The forgetting factor for the first non-adaptive scenario was set to λ = 1 and for the second scenario
that assumed the effect of parametric variability and online adaptation of impulse responses, it was chosen as
λ = 0.995. The population of virtual diabetic subjects had to be generated randomly, assuming the normal
distribution of all parameters of the simulation model. To involve the mechanism of intra-subject time variability
into the in-silico experiment, the chosen parameters of the simulation model were considered and implemented
as time-varying.

By applying the first regularization term, i.e. assuming α=5× 102 and omitting the second regularization
term as β = 0, the sequence of impulse responses documented in Figure 8.1 was obtained by processing the
parameter-invariant dataset.

Assuming both regularization strategies with the corresponding weights chosen as α=5× 102, β =1× 10−3

and the forgetting factor λ = 0.995, by processing the parameter-varying dataset we obtained the results
summarized in Figure 8.2. Significant drift and the adaptation of estimated impulse responses can be observed
since the chosen physiology-based parameters of the simulation model were varying.

8.6 Conclusions
The chapter presented an extension and theoretical framework for the correlation-based method to estimate
impulse responses in the case of a two-input single-output nonparametric empirical model of type 1 diabetes.
The augmented method now allows effective online re-estimation and adaptation of the model parameters in
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(a) Insulin administration effect submodel (b) Carbohydrate intake effect submodel

Figure 8.1: Regularized α ̸= 0, β = 0 estimates of the impulse response coefficients as the functions of number
of processed samples N , obtained by processing the parameter-invariant dataset

(a) Insulin administration effect submodel (b) Carbohydrate intake effect submodel

Figure 8.2: Online adaptive estimates of the impulse response coefficients as the functions of number of processed
samples N , obtained by processing the parameter-varying dataset

real time by considering the new available samples of input-output signals and recursively updated correlation
functions. To this end, the exponentially weighted estimate of the correlation function was introduced to
implement the forgetting of older samples, while the recursive formula for updating this estimate was derived
to effectively exploit the new signals samples and the estimate obtained from the last iteration. One of the
important findings to highlight is the recursive formula for updating the covariance matrix of the uncertainty of
the correlation function estimate, but more importantly, the recursive formula for updating its inverse, which
is actually essential to evaluate the generalized least squares method estimate.
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Chapter 9

Optimal Model-Based Insulin Bolus
Advisor for Subjects with Type 1
Diabetes

9.1 Introduction
Insulin bolus calculators are tools used by people with diabetes to help calculate the amount of insulin they need
to take with meals or snacks. The goal is to help individuals maintain stable blood glucose levels throughout the
day, which is important for avoiding complications of diabetes. A smart insulin bolus calculator represents an
advanced advisory algorithm to support the decision making with regard to the diabetes mellitus, particularly
to improve the insulin therapy. The ultimate purpose of the smart bolus advisor is to determine the time
and the size of the administered insulin bolus such that the preprandial-postprandial glycemia response will be
physiology-optimal while minimizing the short-term and long-term complications related to hyperglycemia or
hypoglycemia. To achieve this goal, we propose a model-based optimal approach that assumes a personalized
empirical model of glycemia dynamics, continuous glucose monitoring readings and a state estimator.

9.2 Model Structure and Preliminaries
Consider a deterministic linear empirical model of a subject with type 1 diabetes defined as the sum of two
discrete-time transfer functions

y(k) = Bu(z)
Au(z) u(k) + Bd(z)

Ad(z) d(k) , (9.1)

where the model output y [mmol/l] represents the deviation of glycemia from its basal value, i.e. the steady-
state value Gb [mmol/l], the first input u [U/min] denotes the deviation of insulin administration rate from
the basal insulin dosing rate ub [U/min], and the second input d [g/min] stands for the carbohydrate intake
rate. In further considerations, transfer function model (9.1) will be transformed into the equivalent minimal
state-space form

x(k+1) =Ax(k)+B

[
u(k)
d(k)

]
y(k) =Cx(k) , (9.2)

For model (9.2), the i ∈ N steps-ahead state prediction can be determined explicitly as

x̂(k+i) = Aix̂(k) +
i∑

j=1
Ai−jB

[
u(k+j−1)
d(k+j−1)

]
, (9.3)

where k ∈ N is the current sample.
The output prediction is simply

ŷ(k+i) = Cx̂(k+i) . (9.4)

Note, that in (9.3) the current state x(k), which is unmeasurable in practice, was replaced by its estimate
x̂(k), what implies that a state estimator (4.9) has to be considered in the structure of insulin bolus advisor.

It can be concluded that due to (4.9), the measurement-based correction of the state estimate is made,
hence the decision on the insulin bolus administration is obtained online while taking the continuous glucose
monitoring readings into the account.
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9.2.1 Standard Bolus Calculator
Standard linear bolus calculators currently used in diabetic practice are based on a simple rule that requires the
knowledge of chosen clinical parameters of the subject, particularly the insulin sensitivity and the carbohydrate
sensitivity. The insulin sensitivity IS [mmol/l/U] quantifies the static effect of the administered insulin on
lowering the glucose concentration, whereas the carbohydrate sensitivity parameter CS [mmol/l/g] represents
the static effect of carbohydrate intake on raising glycemia. The conventional bolus calculator defines the meal
compensating bolus B [U] simply as (1.2).

Concerning the timing of insulin administration, the meal intake and the corresponding insulin bolus typically
occur either virtually simultaneously or the insulin administration precedes the meal intake with a constant time
advance since the premeal bolus treatment strategy is broadly advised by diabetologists [2, 35].

It can be shown that empirically determined time advance and insulin-carbohydrate ratio ultimately lead to
suboptimal insulin treatment as the cancellation of carbohydrate intake effect and insulin administration action
is not best possible.

9.3 Optimal Bolus Calculator
The concept of model-based bolus calculator to optimize the insulin dosing strategy means that the personalized
advices on when and in what quantity to administer the insulin are provided to the patient in real time in order
to improve the quality and safety of therapy.

Compared to the traditional artificial pancreas [35, 36, 37, Auth4] where the insulin dosing is continuous
and its administration rate is adjusted at each sample (see chapter 3), the bolus calculator assumes the control
action constrained to the form of sparsely applied impulses to reject the impulse-like disturbances.

9.3.1 Input Signals
Suppose a single event of sparse impulse disturbance input signal d(k) as

d(k) = adδ(k − n) , (9.5)

where k∈N is the current sample, n∈N is the sample number corresponding to the carbohydrate intake event,
ad > 0 ∈ R [g/min] is the magnitude related to the carbohydrate content of the meal CHO and the sample time
Ts > 0 ∈ R as ad =CHO/Ts, and δ(z) is the discrete approximation of the Dirac delta function defined as

δ(z) =
{

1 z = 0
0 z ̸= 0

∀z ∈ Z . (9.6)

The carbohydrate intake event (9.5) will be considered known in advance as it will be announced p samples
before its actual occurrence. Parameter p ∈ N thus represents the disturbance prediction horizon and can be
related to n and k as

p = n− k . (9.7)

The compensating insulin administration rate u(k), which is basically the subject of optimization, will also
have impulse nature and will be defined as

u(k) = αδ(k − n− β) , (9.8)

where α > 0 ∈ R [U/min] is the magnitude, and β ∈ Z is the time shift between the carbohydrate intake
disturbance impulse and the corresponding insulin bolus administration impulse in the terms of integer multiple
of the sample time Ts. It can be concluded that if β > 0 then the insulin administration is delayed, whereas
if β < 0 then the insulin administration precedes the carbohydrate intake. We will further assume that β is
constrained symmetrically as −p ≤ β ≤ p.

9.3.2 Output Prediction
Before formulating the optimization problem itself, the output prediction for model (9.2) has to be derived.
Considering the preprandial-postprandial time interval, vector Y ∈ Rp+M+1 will be defined as

Y =
[
y(n−p) y(n−p+1) y(n−p+2) . . . y(n) y(n+1) . . . y(n+M−1) y(n+M)

]T
, (9.9)

where M ∈ N is the prediction horizon.
According to (9.9), vector Y can be interpreted as the preprandial-postprandial glycemia profile in the

interval −p ≤ i ≤M samples around the carbohydrate event at sample n.
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The free response vector Ỹ ∈ Rp+M+1 can be formally defined as

Ỹ =
[
ỹ(n−p) ỹ(n−p+1) ỹ(n−p+2) . . . ỹ(n) ỹ(n+1) . . . ỹ(n+M−1) ỹ(n+M)

]T
. (9.10)

The free response ỹ represents the component of output evolution that depends on the current state estimate
x̂(k), the previously announced disturbances up to sample n−1 and their optimized compensations up to sample
n+p−1, while excluding the effect of concerned disturbance event d(n) and its optimized compensation u(n+β).

According to the general prediction (9.3) and (9.4), while assuming u(k) = δ(k), d(k) = 0 and d(k) = δ(k),
u(k) = 0 respectively, vectors Gu, Gd of impulse response coefficients can be written as

Gu =
[
0 CuBu Cu (Au) Bu Cu (Au)2

Bu . . . Cu (Au)p+M−1
Bu
]T

, (9.11)

Gd =
[
0 CdBd Cd

(
Ad
)

Bd Cd
(
Ad
)2

Bd . . . Cd
(
Ad
)p+M−1

Bd
]T

. (9.12)

Introducing the linear operator S ∈ Rp+M+1×p+M+1 for shifting the elements of impulse response vector
one step forward in the top-bottom direction yields the matrix

S =



0 0 0 0 . . . 0 0
1 0 0 0 . . . 0 0
0 1 0 0 . . . 0 0
0 0 1 0 . . . 0 0
...

...
...

...
. . .

...
...

0 0 0 0 . . . 1 0


. (9.13)

To obtain the operator that shift the elements of impulse response vector multiple (i) steps, the matrix power
Si applies.

Note that the operator S as defined by (9.13) is not invertible because of the first zero row, what implies that
the shifting operation is not reversible. Therefore, the complementary operator S−1 for shifting the elements of
impulse response vector one step backward has to be defined explicitly as

S−1 =



0 1 0 0 . . . 0 0
0 0 1 0 . . . 0 0
0 0 0 1 . . . 0 0
...

...
...

...
. . .

...
...

0 0 0 0 . . . 0 1
0 0 0 0 . . . 0 0


. (9.14)

According to the superposition principle for linear system (9.2), the effects of input events related to
the concerned disturbance and its rejection can be fully separated from the free response. As a result, the
preprandial-postprandial output profile Y defined by (9.9) can be decomposed as the sum of disturbance response
SpGdad according to (9.5), compensating action response Sp+βGuα according to (9.8), and the free response Ỹ
as

Y (α, β) = SpGdad + Sp+βGuα + Ỹ , (9.15)

where Sp, Sp+β is the matrix power of operator S defined by (9.13) and Gu, Gd are the impulse response vectors
defined by (9.11),(9.12) respectively.

9.3.3 Optimization
The problem considered is to optimize each insulin dose by manipulating its magnitude α and time shift β in
the compensating insulin bolus administration rate impulse (9.8) in such way that the area of the resulting
preprandial-postprandial deviation of the glycemia response from the target profile will be minimized.

Consider the reference vector Yr ∈ Rp+M+1 as

Yr =
[
yr(n−p) yr(n−p+1) yr(n−p+2) . . . yr(n) yr(n+1) . . . yr(n+M−1) yr(n+M)

]T
. (9.16)

The control error signal gets
e(k) = y(k) − yr(k) . (9.17)

The aim of the design is to minimize the area of the error profile Y − Yr in the least squares sense, while
the corresponding cost function gets

min . J (α, β) = (Y (α, β)− Yr)T Λ (Y (α, β)− Yr) , (9.18)
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where Y is the output response profile (9.15), Yr is the reference profile (9.16), α, β are the decision variables,
and Λ ∈ Rp+M+1×p+M+1

Λ = diag (λ) ⪰ 0 (9.19)
is a positive-definite diagonal weighting matrix. The optimization problem (9.18) involves the following
constraints

umin ≤ α ≤ umax , (9.20)
− p ≤ β ≤ p . (9.21)

Substituting Y according to (9.15) into the cost function (9.18) yields

J (α, β) =
(
SpGdad + Sp+βGuα + Ỹ − Yr

)T Λ
(
SpGdad + Sp+βGuα + Ỹ − Yr

)
, (9.22)

Cost function (9.22) represents a bivariate mixed integer-real optimization problem, which needs to be solved
to determine the optimal α∗ and β∗.

The optimal value of α can be determined analytically. The partial derivative ∂J(α,β)
∂α of (9.22) with respect

to α is equal to

∂J (α, β)
∂α

= 2
(
SpGd

)T ΛSp+βGuad + 2
(
Sp+βGu

)T ΛSp+βGuα + 2Ỹ TΛSp+βGu − 2Y T
r ΛSp+βGu . (9.23)

Considering (9.23) and assuming the optimality condition ∂J(α,β)
∂α = 0, the formula for optimal α gets

α∗ = −
(
adSpGd + Ỹ − Yr

)T ΛSp+βGu

(Gu)T (Sp+β)T ΛSp+βGu
. (9.24)

Equation (9.24) implies that the optimal insulin administration rate α∗ is linearly dependent on the magnitude
of the disturbance ad, which is related to the carbohydrate content of the meal.

Cost function (9.22) can be further simplified by substituting the optimal α∗ according to (9.24) into (9.22)
what yields the univariate cost function

J (β) =
(
SpGdad + Ỹ − Yr

)T Λ
(
SpGdad + Ỹ − Yr

)
−

((
SpGdad + Ỹ − Yr

)T ΛSp+βGu
)2

(Gu)T (Sp+β)T ΛSp+βGu
. (9.25)

The original bivariate mixed integer-real optimization problem (9.22) thus reduces to univariate integer
optimization problem, which is easy to solve iteratively since β is constrained as (9.21).

It is apparent that there exist no analytical formula for β⋆, hence a simple iterative Algorithm 2 is proposed.
In Algorithm 2, variable s ∈ Z represents the search direction and sign (·) is the signum function.

9.4 Experiment
In order to evaluate the proposed improvements and assess the actual effectiveness of the model-based bolus
advisor, a simulation-based experiment will be carried out and the results will be discussed in this section. Each
simulation experiment is designed to mimic the multiple daily insulin injection treatment of a patient with type
1 diabetes during the ten-day period while being a subject to multiple meal disturbances per day with varying
carbohydrate content.

The considered length of the experiment was 10 days including 5 meal disturbances per day. The chosen
sample time Ts = 20 min implies the total number of samples N = 720. The target glycemia was set to 5.5
mmol/l, hence the reference vector (9.16) gets Yr =

(
1 1 . . . 1

)T × (5.5−Gb) = −
(
1 1 . . . 1

)T × 0.5
mmol/l.

Concerning the tuning of the optimal model-based bolus calculator, the carbohydrate intake disturbance
will be considered known p = 6 samples i.e. 120 minutes before its occurrence, what appears to be a realistic
requirement feasible in clinical practice. The optimized prediction horizon was chosen as as M = 50. This
implies that the bounds (9.21) of the decision variable β are −6 ≤ β ≤ 6. The bounds (9.20) for the magnitude
α were set to 0 < α < 0.5 U/min, in order to reflect the inherited positivity of the insulin administration.

Global performance of the insulin therapy will be quantified by the quadratic metric

Q =
N∑

k=1
e2

(k) =
N∑

k=1

(
y(k) − yr(k)

)2
. (9.26)

Simulation results obtained by applying suboptimal and personalized optimal insulin treatment strategy will
be discussed in this subsection. The performance of insulin therapy will be quantified by the maximal emax and
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Parameters: p, M, Λ,Au,Ad,Bu,Bd,Cu,Cd,umin,umax
Data: ad,x̂(k),uf ,df ,Yr

Result: α∗, β∗

Assume: J (β) = −
(
(SpGdad+Ỹ −Yr)TΛSp+βGu

)2

(Gu)T(Sp+β)TΛSp+βGu
, S =(9.13) , S−1 =(9.14)

begin

Gu =
[
0 CuBu Cu (Au) Bu Cu (Au)2

Bu . . . Cu (Au)p+M−1
Bu
]T

;

Gd =
[
0 CdBd Cd

(
Ad
)

Bd Cd
(
Ad
)2

Bd . . . Cd
(
Ad
)p+M−1

Bd
]T

;
Ỹ = Ax̂(k) + Buuf + Bddf ;
β∗ ← 0 ;
s← sign (J (−1)− J (1));
while −p < β∗ < p do

if J (β∗ + s) > J (β∗) then
break;

end
β∗ ← β∗ + s ;

end

α∗ ← − (adSpGd+Ỹ −Yr)TΛSp+β∗
Gu

(Gu)T(Sp+β∗)TΛSp+β∗ Gu
;

α∗ ← max (α∗, umin) ;
α∗ ← min (α∗, umax) ;

end
Algorithm 2: Algorithm to determine the optimal α and β for the model-based insulin bolus advisor

minimal emin control error (9.17), i.e. the observed deviation of glycemia from the reference value, as well as
by the global performance criterion Q determined according to (9.26).

Figure 9.1 shows an application of the traditional suboptimal bolus calculator (1.2) with β = 0 i.e. with
simultaneous carbohydrate intake and administration of insulin, while the insulin-carbohydrate ratio and insulin
sensitivity were determined suboptimally according the model static gains as ICR = 3.9740 g/U, IS = 28.52
mmol/l/U. Despite the suboptimal design, the obtained glycemia response is still relatively acceptable and safe
from the clinical point of view, yet there can be observed poor management of postprandial hyperglycemia.
Another issue is the the response did not follow the target glycemia 5.5 mmol/l as its mean value is significantly
higher.

Optimizing the insulin dosing according to the proposed strategy and Algorithm 2 by considering variable α
and β, much more effective rejection of the disturbances can be observed in Figure 9.2. There can also be seen
a better trade-off between the preprandial hypoglycemia and postprandial hyperglycemia and a smaller area of
the response curve with respect to the reference value.

The resulting overall performance comparison is summarized in Table 9.1.

Experiment Q emax emin
suboptimal insulin dosing 448.1923 2.3857 -0.4308
optimal insulin dosing 117.4105 1.0740 -0.8863

Table 9.1: Performance metrics evaluated for all assumed insulin dosing strategies

9.5 Conclusions
In a nutshell, the original contributions to the state of the art presented in this chapter include the design of
the cost function and the algorithm to determine the optimal personalized timing and the size of insulin bolus
administration by minimizing the deviation of the preprandial-postprandial glycemia response from the target
trajectory.

Compared to conventional suboptimal bolus calculators widely used in clinical practice, the proposed smart
bolus calculator allows to optimally adjust the timing and the size of insulin bolus administration based on a
personalized empirical model of type 1 diabetes and the continuous glucose monitoring measurements in such
way that the resulting glycemia response will be “best possible” in the terms of physiological optimality while
minimizing short-term risks and long-term complications related to hyperglycemia or hypoglycemia state.

Compared to the traditional concept of artificial pancreas, the proposed insulin bolus advisor considers a
sparse and impulse-like insulin administration, which is related to the rejection of carbohydrate intake events.
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Figure 9.1: Simulation of the insulin treatment pursuing the suboptimal dosing strategy

Figure 9.2: Simulation of the insulin treatment pursuing the optimal dosing strategy
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Conclusions

This thesis dealt with the application of originally engineering and especially cybernetic approaches to model
and control glycemia in type 1 diabetic patients. The ultimate goal was to design a complex advisory system to
support decision making with regard to insulin therapy in diabetic subjects in the form of a set of algorithms
for each of the emerging partial subproblems. The presented solution to this complex and holistic problem
involved the design of multiple innovative algorithms and methods. First, we concerned with the empirical
modeling of glycemia dynamics, where we proposed an improved transfer function-based model featuring
different autoregressive dynamics for both inputs and a separate noise model as a better alternative to the ARX
model. This topic also included the identification method based on multi-step-ahead predictive identification
as a substitute to the tradition single-step-ahead prediction error criterion. Identification was performed using
numerical optimization in the constrained parameter space of model zeros, poles, and gains to ensure compliance
of the estimated model with the basic physiology.

The problem of model predictive control and the implementation of the so-called artificial pancreas to control
glycemia in diabetic subjects in terms of automatic insulin administration was also addressed. We focused on
studying the effect of constraints of the controlled variable to achieve a better management of the postprandial
hyperglycemia and hypoglycemia. As the issue of potential control infeasibility has emerged if there were applied
too tight constraints of the controlled and the manipulated variable concurrently, we proposed and validated
an algorithm to adapt the constraints of the controlled variable and thus regain the feasibility and optimality.

In the case of physiology-based modeling or empirical modeling of glycemia dynamics, the actual internal
state of the subject is completely unknown. We proposed a novel state estimation algorithm, which is based
on the generalized least squares method. This state estimator can be seen as an alternative to the widely-used
Kalman filter. The proposed state estimator utilized the sequence of past measurements of the output to form
the linear regression system, which has to be solved in the least squares sense.

Since it is a relatively common encounter for a state observer to perform suboptimally in the application of
model predictive control-based artificial pancreas primarily due to the unknown and hence usually empirically
tuned noise model parameters, it was essential to show that the output error of this suboptimal state observer
forms a correlated sequence, which can be effectively predicted. To this end, we derived an analytical model
of this output error and then proposed two reduced model structures to be used in practice. Namely the
autoregressive and the moving average models were considered, while their estimation was possible using only
data available from the operation of the state observer. Using these estimated models as predictors of the output
error of the state observer to correct the predictions of glycemia has also led to an improved performance of the
model predictive control of glycemia.

Process noise affecting the stochastic state-space empirical model of glycemia dynamics was introduced
primarily to model input uncertainties, particularly the uncertainty of meal announcing and insulin kinetics.
However, the covariance matrix in the process noise model had to be treated as a priori unknown, so we
designed a novel method for estimating its diagonal entries from the available experimental data. The proposed
estimation method was based on fitting the autocorrelation function of the output of the estimated stochastic
state-space model to the sample autocorrelation function obtained from the experimental data.

Another partial subproblem of the complex topic of the advisory system was the identification of the empirical
model of glycemia dynamics from virtual diabetic data. Therefore, we designed a novel identification method
for the estimation of the two-input, single-output nonparametric impulse response model. The proposed
identification method was based on correlation functions and the generalized least squares method with the
estimate regularization. As an extension of this approach, we later designed its online version to allow for an
effective real-time parameter reestimation and adaptation of impulse responses due to the presence of parametric
time variability of a real diabetic subject. Moreover, a new optimal kernel-based regularization strategy was
designed to improve the robustness properties of the parameter estimate.

Finally, we addressed the problem of optimizing the conventional insulin treatment by proposing an
innovative model-based bolus calculator algorithm to generate real-time advice on the optimal time and
quantity of insulin bolus administration to compensate for meal-related carbohydrate intake. Thus the resulting
preprandial-postprandial glycemia response of the subject could be improved and mimic the physiological
response of a healthy subject. The proposed optimal bolus calculator strategy was based on a sparse and
impulse control action, which is more feasible to apply in clinical practice.
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