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Ilkovičova 3, 812 19 Bratislava

Supervisor : Prof. Ing. Vojtech Veselý, DrSc.
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Nomenclature

Mathematical denotations

Rm×n Matrix algebra of dimensions m × n with coefficients in set of real
numbers

I Identity matrix of corresponding dimensions

0 Matrix of corresponding dimensions with entries equal to 0

A Matrix A, if not explicitly stated, is assumed to have compatible
dimensions

AT Transpose of matrix A

A−1 Inverse of matrix A

‖ A ‖ Norm of matrix A

λ(A) Set of the eigenvalues of matrix A

λmax(A) The maximal real value of eigenvalue of matrix A

A > 0 Matrix A is symmetric and positive definiteness

A ≥ 0 Matrix A is symmetric and positive semi-definiteness

∗ A block that is transposed and complex conjugate to the respective
symmetrically placed one

Acronyms

BMI Bilinear Matrix Inequality

LMI Linear Matrix Inequality

PDQS Parameter Dependent Quadratic Stability

QS Quadratic Stability

MPC Model Predictive Control

NCS Networked Control System

LKF Lyapunov-Krasovskii Functional
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1 Introduction

This submitted PhD thesis deals with problems of applying robust control
theories to design robust output feedback controller for uncertain system in
the fields of decentralized control, model predictive control, and networked
control system.

1.1 Motivation

Conventional control theory with the requirement of exactly mathematical
model of real process causes itself very hard to apply in the practice. Hence
robust control theory is employed and developed to deal with system analysis
and control design for such imperfectly known process models. Nowadays
robust control becomes a highly effective method able to work in real con-
ditions. Although a rich theory has been developed for the robust control
of linear systems, but very little is known about the robust control of linear
systems with constraints. Recently, this type of problem has been addressed
in the context of Model Predictive Control (MPC). The success of MPC in
industry is primarily due to the ease and the effect with which constraints
on the inputs and states (outputs) can be included in the control problem
formulation. However there is always a fundamental question about MPC, is
its stability and robustness to model uncertainty.

Nowadays most industrial processes are naturally complex or large-scale
systems. One of the main problems of complex large-scale system is highly
structured. Hence, a decentralized control system employing distributed com-
putation is essential. Another factor that significantly influences the problem
of control system design for large-scale system is the inherent uncertainty in
modeling the dynamic behavior of the system. The combination of uncer-
tainties, high dimensions, and severe performance specifications creates a
difficult control system design problem even were one to use a centralized
control architecture. The need for robust decentralized control has been in-
vestigated for applications in complex and distributed systems, investigating
robust stability of the interconnections of systems with local controllers.

Major advancements over the last decades of the 20th century in wired
and wireless communication networks gave rise to the new paradigm of Net-
worked Control System (NCS). This evolution of standalone control systems
to NCSs brought many attractive advantages, which include low cost, sim-
ple installation and maintenance, increased system agility, higher reliability
and greater flexibility. However the use of communication networks makes it
necessary to deal with the effects of the network-induced imperfections and
constraints, two among them are: time-varying delays, packet dropouts. With
time varying network-induced delay, arbitrary packet loss and uncertainties
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of the controlled system, the insertion of the communication network in the
feedback control loop makes the analysis and design of an NCS complex.
Therefore, to handle network delays and packet loss in a closed-loop control
system with model uncertainty over a communication network, advanced ro-
bust control methodologies are required.

The application of robust control theory in fields of decentralized control,
model predictive control and robust networked control system is not really
new, and there are many researches relating to these areas. However there
are still many open questions which motivate us to research. In the next
section, the open issues will be clearly identified based on review of existing
works in the relevant areas.

1.2 Background

1.2.1 Robust control theory

Robust control theory of dynamical systems has started in the end of 70
years of the 20th century, when the foundations of optimal control of linear
systems were established. The development of methods for robust control of
linear dynamic systems and nonlinear dynamic systems described by state
space equations with uncertainties especially was contributed by Lyapunov
stability theory. Quadratic stability (QS) and parameter dependent quadratic
stability (PDQS) criterions are used to analyze robust stability and design
robust controllers for polytopic linear model in time domain. Description of
uncertain systems using the convex polytope-type uncertainty has found its
natural framework in the form of Linear Matrix Inequality (LMI) or Bilinear
Matrix Inequality (BMI). For convex polytopic uncertainty the Edge theorem
and related works provide stability conditions for polytopic systems. It’s
well know that QS is conservative. To reduce QS’ conservatism in analyzing
robust stability of polytopic systems, PDQS has been introduced for both
the continuous-time systems (Peaucelle et al. [2000], Rosinová et al. [2003])
and the discrete-time systems (Olivera et al. [1999]). Another important
feature of stability condition is its applicability for a controller design (well
known quality of this kind is dilation: it means that the system matrix does
not appear in a product with unknown matrix-convex problem). Nonlinear
convex inequality (non-convex problem) may be pre-converted into the LMI
in some cases by different technics and algebraic implementation such as
Schur complement, congruent transformation, Finsler lemma, Elimination
lemma. In the paper Grman et al. [2005], authors provided survey of some
recent robust stability conditions, their mutual comparison, and presents new
robust parameter-dependent quadratical stability conditions for continuous-
time and discrete-time systems with convex polytopic uncertainty.
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In this dissertation, parameter dependent quadratic stability (PDQS) cri-
terion is used to synthesise robust controller with quadratic guaranteed cost
for the polytopic model of the uncertain system.

1.2.2 Decentralized control

The theory of complex or large-scale systems studies how relationships be-
tween subsystems give rise to the collective behaviors of a whole system
interacts and forms relationship with its environments. Robustness is one
of the attractive qualities of the decentralized control scheme, since such a
control structure can be inherently resistant to a wide range of uncertain-
ties both in subsystems and in the interconnections. Considerable effort has
been made to consider robustness issues in the decentralized control structure
and decentralized control design schemes, eg in Rosinová and Veselý [2006],
Stankovič et al. [2007], and Zečevič and Šiljak [2004]. The above approaches
compute decentralized control by a solution of the problem of the overall
systems size. To reduce the problem size in decentralized control design for
large scale systems, the diagonal dominance or block diagonal dominance con-
cept can be adopted. Recently, the so called Equivalent Subsystems Method
has been developed for decentralized control in frequency domain Kozaková
et al. [2009]. The important point in this approach is that the controllers of
equivalent subsystems can be independently tuned for stability according to
specified stability and/or performance indices, so that the resulting decen-
tralized controller guarantees the same stability/performance indices for the
full system. The open question addressed by this thesis is how to design a
robust decentralized controller based on subsystem approach in state space.

1.2.3 Model predictive control

MPC has been widely adopted in industry as an effective means to deal with
multivariable constrained control problems. The success of MPC depends on
the degree of precision of the plant model. In practice, modeling real plants
inherently includes uncertainties that have to be considered in control design,
that is the control design procedure has to guarantee stability, performance
and robustness properties of closed-loop systems in the whole uncertainty
domain. Robust-constrained MPC using linear matrix inequality (LMI) has
been proposed by Kothare et al. [1996], where the polytopic and structured
feedback uncertainty models have been used. The main idea of Kothare et al.
[1996] is the use of infinite horizon control laws, which guarantees robust sta-
bility for the closed-loop system with state feedback. Constraints on control
input are considered through invariant ellipsoids. The resulting control law
in Kothare et al. [1996] is given by a state feedback gain matrix satisfying the
respective LMI conditions for stability and additional LMI condition for con-
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straints. Unconstrained robust output feedback MPC design with one-step
ahead prediction is proposed in Veselý and Rosinová [2009]. The advantage
of this method is that model prediction contains all the possible combinations
of uncertainty. However, robust model prediction is just built for one-step-
ahead prediction. In the paper Veselý et al. [2010], a construction of MPC
for an uncertain polytopic system with constrained control based on model
structure introduced in Veselý and Bars [2008] is proposed. The limitation
of this approach is that the robust MPC used to design controller is built on
the mix of the plant uncertain and nominal models; thus, it does not contain
all the possible combinations of uncertainty in the original-plant polytopic
model. As a result, the designed control law may not provide stability guar-
antee for the uncertain plant model and uncertain model prediction. This
challenge will be investigated and solved in this thesis.

1.2.4 Networked control systems

Network-induced Delay

In the recent years, the stability analysis and controller synthesis for sys-
tems with time-delay are important in theory and practice. There are two
approaches for controller design and study of closed-loop system stability in
the time domain: Razumikhin theorem and Lyapunov-Krasovskii functional
(LKF) approach. It is well known that the LKF approach often provides
less conservative results than Razumikhin theorem (Friedman and Niculescu
[2008]). To obtain necessary and sufficient condition for stability, it is nec-
essary to use complete quadratic LKF as pointed out by Repin [1965]. By
using the complete LKF approach, the least conservatism is obtained in com-
parison with above methods. However, to reduce the conservatism efficiently,
two techniques have been developed. The first one is partitioning the delay
to Nd parts and using the discretized scheme of the Lyapunov-Krasovskii
matrices (from the complete LKF) for these parts. It has been shown that if
Nd →∞, the sufficient stability conditions for time delay systems approach
to necessary ones (Gu et al. [2003]). From our review of literature, we know
that, the guaranteed cost control approach has been extended to the uncer-
tain time-delay systems, for the state feedback case, see (Yu and Chu [1999],
Lee and Lee [1999]) and for output feedback (Chen et al. [2004], Xia et al.
[2008]). However, in the above papers the obtained stability conditions are
only sufficient, which can be far from necessary and sufficient ones, and the
control state/output algorithm involves conservatism.

Packet Dropout

Two major approaches are usually used to accommodate the issue of packet
loss in an NCS design. One way is that one first designs the control system
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without regard to the networks, and then determines a performance level
that the networks should satisfy so that the closed-loop system maintains its
performance (for example, stability) when some control and sensor signals
are transmitted via the networks (Zhang et al. [2001]). The other approach
is to treat the network protocol and traffic as given conditions and design
the control strategies that explicitly take the network-induced issues into ac-
count (Azimi-Sadjadi [2003]; Xiong and Lam [2007]). In the last two decades,
MPC has been widely adopted in industry and there are some researching
results that have been presented in MPC for NCSs with packet-loss. Li et al.
[2009] proposed a stabilizing MPC strategy for NCS with data packet loss
between sensor and controller. Polytopic description was used to describe
uncertainty of system. In Ding [2010b], the author proposed a MPC design
method for NCS with double-sided packet loss. A packet-loss dependent Lya-
punov function is used for stabilization, and the result is used for synthesizing
model predictive control by parameterizing the infinite horizon control moves
into a single state feedback law. One of the ways to overcome the resulting
loss-packet problems is the use of prediction based compensation schemes
(Grüne et al. [2009a]; Grüne et al. [2009b]). The open question addressed
by this thesis is how to design a prediction based compensation schemes for
NCS with arbitrary packet loss guaranteeing robustness (to be against model
uncertainty), and insuring input constraints.

1.3 Objective of Thesis

The main objectives of the dissertation are these:

1. To design robust decentralized controller for large-scale system by using
subsystem approach in state space.

2. To design robust output feedback model predictive control with input
constraints to explicitly incorporate plant model uncertainty.

3. To employ novel algorithms with the least conservatism to design robust
controller for uncertain NCS with time-varying network-induced delay.

4. To design robust predictive controller for uncertain NCS with arbitrary
packet-loss.

1.4 Outline and Summary of Contributions

This dissertation is organized into five chapters including introduction and
conclusion. The major contributions are covered by the following three chap-
ters:
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Chapter 2 provides an analogy of equivalent subsystems approach for
decentralized control design in state space. The overall control problem is
reduced to the subsystems size and therefore the proposed method excludes
limit of system order in BMI solution; on subsystem level we adopt robust
static output feedback control design with guaranteed cost, the interaction
bound is considered via subsystem stability degree. The proposed design
method is based on the Generalized Gershgorin Theorem and V-K iteration
procedure in LMI to check the robustness and performance of complex sys-
tem.

Chapter 3 develops a new synthesis method to design a robust output
feedback MPC with input constraints to extend model predictive control in
papers Veselý and Rosinová [2009] and Veselý et al. [2010]. The proposed
predictive control strategy expands the predictive control algorithm in paper
Veselý and Rosinová [2009] to longer prediction horizon and control hori-
zon. Additionally, an integrator is added to the controller design procedure
to reject disturbances and maintain the process at the optimal operating
conditions or setpoints. Two input constraints approaches such as heuris-
tic one and invariant set are concerned. The main contribution is that all
the timedemanding computations of the output feedback gain matrices are
realized off-line.

Chapter 4 includes two parts which introduce novel methods to design
robust output feedback controller for NCSs with the time-varying delay and
packet-loss. The first presents two new approaches such as complete LKF and
discretized LKF to design robust output feedback PID controllers achieving
a guaranteed cost such that the NCSs can be stabilized for all admissible
polytopic-type uncertainties and time-varying delays with less conservatism
than previous works. In the second part, a robust output feedback linear
model predictive control scheme over a network with double-sided packet loss
is implemented. The main idea is based on the combination of compensation
mechanism and robust model predictive control design approach in Chapter
3. As a result, networked predictive control systems with loss packet are
modeled as switched linear systems. This enables us to apply the theory
of switched systems to establish the stability condition of networked model
predictive control.

The evaluation, summarization of the dissertation and discuss open prob-
lems as well as broadens our visions with some future works come in the last
chapter 5.
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2 Robust decentralized controller design

Consider the following linear large-scale continuous system including M sub-
systems with polytopic uncertainty described

ẋ(t) = A(ξ)x(t) +B(ξ)u(t), y(t) = Cx(t) (2.1)

where matrices A(ξ), B(ξ) belong to a convex and bounded polytope S:

S :=

{
A(ξ) =

N∑
k=1

ξkAk, B(ξ) =
N∑

k=1

ξiBk,
N∑

k=1

ξk = 1, ξk ≥ 0

}
(2.2)

Matrices Ak, Bk can be split in two parts

Ak = Adk +Amk ; Bk = Bdk +Bmk ; k = {1, 2...N} (2.3)

where Adk = diag{Akjj}, Bdk = diag{Bkjj}, j = {1, ...,M} are block diagonal
matrices of the corresponding j − th subsystems and matrices Amk = Ak −
Adk, Bmk = Bk − Bdk which are diagonal off matrices, which describe the
interactions between remain M − 1 subsystems and j − th subsystem. The
output matrix C = diag{Cj}, j = {1, ...,M}.

We study the problem to find the decentralized stabilizing PI static output
feedback controller for the overall system, described by control law

uj(t) = KPjyj(t) +KIj

∫
yj(t)dt = KPjCjxj(t) +KIjzj(t) (2.4)

based on local robust controllers design, so that only problems of subsystems
dimension have to be solved.

With control algorithm (2.4), closed-loop feedback of the overall system
is obtained as follows

ẋ(t) =
(
Adc(ξ) +Amc(ξ)

)
x(t) (2.5)

where i, j = {1, ...,M}; Adc(ξ) =
N∑
k=1

ξkdiag{Akcjj}, Akcjj = Akjj + BkjjFjCj ;

Amc(ξ) =
N∑
k=1

ξk{Akcij}, Akcij = Akij +BkijFjCj (j 6= i), Akcij = 0(j = i).

Simultaneously, with the system (2.5) we consider the following auxiliary
complex system

ẋ(t) =
(
Gd(ξ) +Gm(ξ)

)
x(t) (2.6)

where i, j = {1, ...,M};Gd(ξ) =
N∑
k=1

ξkdiag{−γkjj}, γkjj > 0;Gm(ξ) =
N∑
k=1

ξk{ρkij}

, ρkij > 0(j 6= i), ρkij = 0(j = i).
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Due to Gershgorin theorem the stability of system (2.6) on k-vertex is
guaranteed if

γkjj ≥
M∑

i=1;i 6=j

ρkij , j = {1, 2, ...,M}, k = {1, 2, ...,M}. (2.7)

Assertion 2.1 Let γkjj to be stability degree of j-subsystem for k-vertex and

ρkij =‖ Akij +BkijFjCj ‖;i,j={1,2,...,M}, if for the system (2.5), the condition
(2.7) holds,the system is stable in k−vertex, k = {1, 2, ..., N}.

Controller design procedure

From above, the following steps may give positive results to robustly stabilize
the closed-loop large-scale system.

1. Design the robust controller with gain matrix Fj for j-subsystem such
a way that (2.7) holds and the following subsystem is stable

Akcjj + γkjjI, j = {1, 2, ...,M}, k = {1, 2, ..., N} (2.8)

2. Design a gain matrix Fj so that the following condition holds[
(ρkij)

2I (Akcij)
T

Akcij Iij

]
≥ 0; i, j = {1, 2, ...,M}; i 6= j; k = {1, 2, ..., N}

(2.9)

3. Design a gain matrix Fj so that trace(Dk
j ) is minimized and where Dk

j

= diag{ρkij}, i 6= j

4. When all subsystems are robust stable with guaranteed cost, check the
robust stability of complex system.

5. If the complex system is not robustly stable with performance increase
stability degree γkjj and return to first point.

6. If the complex system is not robustly stable with performance, an
alternative way to get robust stability of complex system is as fol-
lows: put F = {Fj} = αF ;α > 0 and using V-K iteration pro-
cedure using LMI for α = 1 and complex system calculate matrices
Pk, k = {1, 2, ...N};G,H and then α > 0

We have to note that above procedure do not guarantee the stability of
complex system, but above procedure gives the way how we can obtain the
robust stability of complex system.
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3 Robust model predictive control design

3.1 Robust MPC

Let the polytopic model of the plant to be controlled be described by the
following linear discrete time difference equation

x(t+ 1) = A(ξ)x(t) +B(ξ)u(t), y(t) = Cx(t) (3.1)

where matrices A(ξ), B(ξ) belong to a convex and bounded polytope S (2.2).
Consider the following integrator to successfully force disturbance rejec-

tion and setpoint tracking

z(t+ 1) = z(t) + e(t) = z(t) + Cx(t)− w(t) (3.2)

where w(t) is desired reference.
After adding integrator (3.2) into process model (3.1), we assume that

the model (without change of denotation) in the following compact form:

x(t+ 1) = A(ξ)x(t) +B(ξ)u(t) +Bww(t) (3.3)

where x(t) :=
[
xT (t) zT (t)

]T
;BTw = −[0 I];Bw(ξ)T = [B(ξ) 0] and A(ξ) :=

[A(ξ) 0 ; C I].
Consider the output feedback predictive control algorithm with a predic-

tion and control horizon Ny, Nu (Nu ≤ Ny) for system (3.3) as follows

u(t+ i) =

{ ∑Ny
j=0 [FijCx(t+ j)− FijCww(t+ j)] , 0 ≤ i < Nu

0, i = {Nu, ..., Ny − 1}
(3.4)

where C := diag{C, I}, CTw = [I 0]. Input constraints are assumed to be

‖ui(t+ k|t)‖ ≤ ui; i = {1, 2, ...,m}, k = {0, 1, ..., Nu − 1} (3.5)

where ui is the maximum value of the i− th input control ui(.).
The states of the system (3.3) for the instant t+ k, k = {0, ..., Ny − 1}

x(t+ k + 1) = A(ξ)x(t+ k) +B(ξ)u(t+ k) +Bww(t+ k) (3.6)

Considering xf (t) = [xT (t) ... xT (t+Ny−1|t)]T ; $(t) = [wT (t) ... wT (t+
Ny|t)]T ; and ν(t) = [uT (t) uT (t+1) ... uT (t+Nu−1)]T , state model prediction
is obtained as follows

Af (ξ)xf (t+ 1) = Ax(ξ)x(t) +Bf (ξ)ν(t) +Bwf$(t) (3.7)
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where Bwf = diag{Bw} ∈ RnNy×lNy ; Bf (ξ) =
[
BTd (ξ) ZT

]T ∈ RnNy×mNu ,

Bd(ξ) = diag {B(ξ)} ∈ RnNu×mNu , Z = {0} ∈ Rn(Ny−Nu)×mNu ;

Af (ξ) =


I 0 0 · · · 0 0

−A(ξ) I 0 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · −A(ξ) I

 ; Ax(ξ) =


A(ξ)

0
...
0


Using definitions of xf (t) and $(t), the predictive control algorithm (3.4)

is also obtained in the following form

ν(t) = FxCx(t) + FfCfxf (t+ 1)− F$(t) = FCmη(t)− F$(t) (3.8)

where ηT (t) = [xT (t) xTf (t + 1)]T , Cf = diag{C, ..., C} ∈ RlNy×nNy , Cm =
diag{C,Cf} and Fx = {Fi0}, Ff = {Fij}j>0, F = [Fx Ff ].

Substituting ν(t) in the form of (3.8) into the model prediction (3.7), the
closed-loop model prediction is obtained as follows

Acf (ξ)xf (t+ 1) = Acx(ξ)x(t)−Bcf (ξ)$(t) (3.9)

where Acf (ξ) = Af (ξ)−Bf (ξ)FfCf , Acx(ξ) = Ax(ξ) +Bf (ξ)FxC, Bcf (ξ) =
Bf (ξ)F +Bwf .

The problem now is to design a robust MPC with output feedback (3.4)
for a given Ny, Nu which guarantees the closed-loop system (3.9) stability
(PDQS), robustness and guaranteed cost for the following cost function(over
the infinite optimization horizon):

J =

∞∑
t=0

J(t) =

∞∑
t=0

[
ηT (t)Qη(t) + v(t)TRv(t)

]
(3.10)

where Q = diag{Q0, ..., QNy} and R = {R0, ..., R(Nu−1)}, (Qk = qkI,Rk =
rkI; qk ≥ 0, rk > 0).

Main result on robust MPC design can be summarized in the following
theorem.

Theorem 3.1 The closed loop system (3.9) is robustly stable with guaranteed
cost J0 and parameter dependent Lyapunov function if and only if there exist
matrices H ∈ RnNy×n(Ny+1), P (ξ) = PT (ξ) > 0 and gain matrix F such that
the following bilinear matrix inequality holds

W (ξ) = D(ξ) +ATm(ξ)H +HTAm(ξ) +Q+ CTmF
TRFCm ≤ 0 (3.11)

where D(ξ) ∈ Rn(Ny+1)×n(Ny+1), Am(ξ) = [Acx(ξ) −Acf (ξ)], D(ξ) =
diag{−P (ξ), 0, ..., 0, P (ξ)}.
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In conclusion, for the initial conditionx (t0) = x0, the Robust MPC law is
summarized by the following algorithm:

1. Off-line compute gain matrix F from solution of the optimization prob-
lem (3.11).

2. Get new value of current outputs from plant and predicted outputs
from the model prediction.

3. Compute v(t)oru(t+ i), i = 0, 1, ...Nu − 1.

4. Applyu (t) to the plant and v(t) to the model prediction.

5. t := t+ 1. Go to 2.

3.2 Robust MPC with input constraints

Heuristic method

For the obtained value of u(t) in the previous section, control algorithm with
input constraints is constructed as the follows:

uc (t) = kuu (t) (3.12)

where ku is defined as the follows

ku =

{
1 if ‖u (t)‖ ≤ ‖uM‖
‖uM‖
‖u(t)‖ if ‖u (t)‖ > ‖uM‖

(3.13)

The equation (3.13) implies 0 < ku ≤ 1. For a given positive number kumin >
0, suppose ku satisfies

kumin ≤ ku ≤ 1 (3.14)

Substituting uc (t) instead of u(t)in (3.4) one obtains the closed-loop system
(3.9). When the gain matrix Fo is known for kuFo we obtain a new closed
loop system

xf (t+ 1) = Ac (ξ, ku)x (t) (3.15)

where ku plays a role of new bounded uncertainty defined by (3.14). For
this case, the number of vertices increases to 2N putting ku = kumin, ku = 1
and a problem is to find such value of kumin that guarantees the closed-loop
robust stability with performance. The following Lemma is used to check
robust stability for the closed-loop system (3.15).

Lemma 3.1 Under the same conditions as in Theorem 1 if for a given ku =
kumin and ku = 1 the closed-loop system (3.15) is
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1. quadratically stable with guaranteed cost if there exists feasible solution
of (3.11) with respect to matrices Pi = Pj = P = PT > 0 and H for
i = {1, 2, ...2N};

2. parameter dependent quadratically stable with guaranteed cost if there
exists feasible solution of (3.11) with respect to matrices Pi > 0 and H
for i = {1, 2, ...2N};

Value of kumin is chosen as small as possible until the robust stability of
the closed loop system (3.15) is also guaranteed, respectively the condition
(3.11) holds.

Invariant set method

To derive sufficient stability conditions for input constraints for (3.9), we
consider that the positive invariant region (Rohal-Ilkiv [2004]), with respect
to closed-loop system motion can be defined by the ellipsoidal Lyapunov
function set given as follows

Ω(P (ξ)) = {η(t) ∈ Rn(Ny+1) : ηT (t)P̂ (ξ)η(t) ≤ θ} (3.16)

where P̂ (ξ) = diag{P (ξ), ..., P (ξ)} ∈ Rn(Ny+1)×n(Ny+1) and θ is a positive
real parameter which determines the size of Ω(P (ξ)).

ConsiderDidF denotes the id−th row of matrix F whereDid = [0...0 1 0...0] ∈
Rl×mNu and define

 L(F ) =

{
η(t) ∈ Rn(Ny+1) : ‖DidFCmη(t)‖ ≤ ūi; id = i+ (j − 1)m;

i = {1, ...,m}; j = {1, ..., Nu}

}
(3.17)

The condition of input constraints reduces to LMI given by the following
theorem (Veselý et al. [2010])

Theorem 3.2 The inclusion Ω(P (ξ)) ⊆ L(F ) is for output feedback control
equivalent to [

P̂ (ξ) ∗
DidFCm λid

]
≥ 0 (3.18)

for all id = i+(j−1)m; i = {1, ...,m}; j = {1, ..., Nu}, where λid ∈< 0,
u2
i

θ >.
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4 Robust networked control systems design

4.1 Robust controller design for NCS with time-varying
network-induced delay

Consider the following linear time-delay system

ẋ(t) = A(ξ)x(t) +Ad(ξ)x(t− τ(t)) +B(ξ)u(t)
y(t) = Cx(t)
x(t) = ϕ(t), t ∈ [−τM ; 0]

(4.1)

We assume that a real-time communication network is integrated into
feedback control loops of system (4.1), and the network induced delay in
NCS τ(t) is given by 0 < τ(t) ≤ τM and the derivative of τ(t) is bounded by
|τ̇(t)| ≤ µ ≤ 1.

Consider the following PID control algorithm for system (4.1)

u(t) = KP y(t− τ) +KI

∫ t

0

y(t− τ)dt+KD
d

dt
y(t− τ) (4.2)

Using Newton-Leibniz formulas, the extended closed-loop system of sys-
tem (4.1) with PID control algorithm (4.2) is obtained as follows:

Md(ξ)Ẋ(t)+Ac(ξ)X(t)+Adc(ξ)

∫ t

t−τ
Ẋ(s)ds+Add(ξ)

∫ t

t−τ
Ẍ(s)ds = 0 (4.3)

where X(t) =
[
xT (t) zT (t)

]T
, z(t) =

∫
y(t− τ)dt.

Given positive definite symmetric matrices Q, R and S, we will consider
the cost function

J =

∫ ∞
0

J(t)dt (4.4)

where J(t) = XT (t)QX(t) + uT (t)Ru(t) + ẊT (t− τ)SẊ(t− τ).

Complete quadratic Lyapunov-Krasovskii Functional approach

Theorem 4.1 Consider the uncertain linear time-delay system (4.1) with
network-induced delay τ satisfying 0 < τ ≤ τM , τ̇ ≤ µ ≤ 1 and the cost
function (4.4). If there exist a PID controller of form (4.2), scalar J0, and
matrices Pi > 0, Gi > 0, G1i > 0, G2i > 0, G3i > 0 (i = 1, ..., N), N1, N2,
N3, N4, and N5 that satisfy the following matrix inequality

Wi =


w11
i w12

i w13
i w14

i w14
i

∗ w22
i w23

i w24
i w25

i

∗ ∗ w33
i w34

i w35
i

∗ ∗ ∗ w44
i w45

i

∗ ∗ ∗ ∗ w55
i

 ≤ 0 (4.5)
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where

w11
i = N1Mdi +MT

diN
T
1 + τMG1i + µG3i + CTDF

T
DRFDCD + S

w12
i = N1Aci +MT

diN
T
2 + Pi + CTDF

T
DRFCn

w13
i = N1Adci +MT

diN
T
3 − CTDFTDRFPCP

w14
i = MT

diN
T
4

w15
i = N1Addi +MT

diN
T
5 + (1− µ)µG3i − CTDFTDRFDCD − S

w22
i = N2Aci +ATciN

T
2 + µGi + CTn F

TRFCn +Q
w23
i = N2Adci +ATciN

T
3 + (1− µ)Gi +G2i − CTn FTRFPCP

w24
i = ATciN

T
4 +G2i

w25
i = N2Addi +ATciN

T
5 − CTn FTRFDCD

w33
i = N3Adci +ATdciN

T
3 − (1− µ)Gi − 1

τM
G1i −G2i + CTPF

T
P RFPCP

w34
i = ATdciN

T
4 −G2i

w35
i = N3Addi +ATdciN

T
5 + CTPF

T
P RFDCD

w44
i = −G2i − 1

τM
G1i

w45
i = N4Addi

w55
i = N5Addi +ATddiN

T
5 − (1− µ)G3i + CTDF

T
DRFDCD + S

Then the uncertain system (4.1) with controller (4.2) is parameter-dependent
quadratically- asymptotically stable and the cost function (4.4) satisfies the
following bound

J ≤ J0 =
√
λ2MP + λ2MG + λ2MG1 + λ2MG2 + λ2MG3 ∗ JM (4.6)

where λMP = max
i=1..N

(λmax(Pi)), λMG = max
i=1..N

(λmax(Gi)), λMG1 =

max
i=1..N

(λmax(G1i)), λMG2 = max
i=1..N

(λmax(G2i)), λMG3 = max
i=1..N

(λmax(G3i)),

JM =

√√√√√ ‖x0‖4 +
(∫ 0

−τ ‖ϕ(s)‖2 ds
)2

+
(∫ 0

−τ dθ
∫ 0

θ
‖ϕ̇(s)‖2 ds

)2
+
(∫ −τ
−τM ‖ϕ(s)‖2 ds

)2
+
(∫ 0

−τ ‖ϕ̇(s)‖2 ds
)2

Discretized Lyapunov-Krasovskii Functional approach

Let us now to suppose that the time interval [t−τ(t), t] is partitioned into Nd
parts. The discretization-like method is employed considering the state vector

shifted by a fraction τ(t)
Nd

of the delay. Based on partitioning scheme of time-

varying delay and using IQC (Ariba and Gouaisbaut [2007]), a new discretized
Lyapunov-Krasovskii functional method is obtained to design a PI controller
achieving a guaranteed cost such that the NCSs can be stabilized for all
admissible uncertainties and time-varying delays with the least conservatism
in the following theorem
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Theorem 4.2 Consider the uncertain linear time-delay system (4.1) with
network-induced delay τ(t) satisfying 0 < τ(t) ≤ τM , ‖τ̇(t)‖ ≤ µ ≤ 1 and
the cost function (4.4, S = 0). Assume that there exists a PI controller of
form (4.2), scalar J0, and matrices Pi > 0, Q0i > 0, Q1i > 0, Q2i > 0, R0i >
0, R1i > 0(i = {1, . . . , N}), N1, N2, N3 that satisfy the following matrix in-
equality

Wi =

 wi11 wi12 wi13
∗ wi22 wi23
∗ ∗ wi33

+MT
Q0

[
µQ0i (1− µ)Q0i

∗ −(1− µ)Q0i

]
MQ0

+ MT
R0

[
τMR0i 0
∗ − 1

τM
R0i

]
MR0

+MT
R1

[ τM
Nd
R1i 0

∗ −Nd
τM
R1i

]
MR1

+
{
MT
Q1a

Q1iMQ1a −
(

1− µ
Nd

)
MT
Q1b

Q1iMQ1b

}
≤ 0

(4.7)
where

wi11 = N1 +NT
1 +

[
τMµ(Nd−1)

2Nd

]2
1

1−µQ2i, w
i
12 = N1Aci +NT

2 + Pi

wi13 = N1AdciIP +NT
3

wi22 = N2Aci +ATciN
T
2 + CTn F

TRFCn +Q
wi23 = N2AdciIP +ATciN

T
3 − CTn FTRFPCP IP

wi33 = N3AdciIP + ITPA
T
dciN

T
3 − diag{0Ndn, Q2i}+ ITPC

T
PF

T
P RFPCP IP

matrices MQ0, MR0, MR1 ∈ R2n×(Nd+3)n and matrices MQ1a
,MQ1b

∈
RNdn×(Nd+3)n (see Dissertation for more detail), then the uncertain system
(4.1) with controller (4.2) is parameter-dependent quadratically asymptoti-
cally stable and the cost function (4.4) satisfies the following bound

J ≤ J0 =
√
λ2MP + λ2MQ0

+ λ2MR0
+ λ2MR1

+ λ2MQ1
∗ JM (4.8)

where λMP = max
i={1,...,N}

(λmax(Pi)), λMQ0
= max

i=1...N
(λmax(Q0i)), λMR0

=

max
i=1...N

(λmax(R0i)), λMR1 = max
i=1...N

(λmax(R1i)), λMQ1 = max
i=1...N

(λmax(Q1i))),

JM =

√√√√√√√√√√√
‖x0‖4 +

(
0∫

−τM
‖ϕ(s)‖2ds

)2

+

(
0∫

−τM
dθ

0∫
θ

‖ϕ̇(s)‖2ds

)2

+

+

Nd 0∫
− τMNd

‖ϕ(s)‖2ds

2

+

 0∫
− τMNd

dθ
0∫
θ

‖ϕ̇(s)‖2ds

2
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Figure 4.1: Configuration of considered NCS

4.2 Design of robust controller for NCS with packet-loss

The framework of NCS considered in the chapter is depicted in Fig. 4.1. Let
the polytopic model of the plant to be controlled be described by the linear
discrete time difference equation (3.1). Networks exist between sensor and
controller and between controller and actuator. It is assumed that in network
transmission there is negligible network-induced time delay (time delay is
within sampling time of NCS) or it is treated as a dropout, but packet loss
may happen. The sensor and the controller only send data at each sampling
time, as well as the controller and actuator receive data. If data are lost at one
sampling time, at next sampling time network only transmit new data and
old data are discarded. The data are transmitted in a single packet. Base on
(Xiong and Lam [2007]), the packet-loss process is redefined as follows. Let
= = {t1, t2, ..., ts, ts+1, ...} a subsequence of {1, 2, 3, ...}, denote the sequence
of time points of successful data transmissions from the sensor to the actuator,
and lp max = max(ts+1 − ts − 1); lp max ≤ Nu − 1 be the maximum value of
packet-loss number. Note that at time instant t ∈< ts, ts+1 >, if data is not
successfully transmitted from the sensor to the controller, the controller will
not calculate new control signal for the actuator and as result, the packet-loss
occurs.

To overcome the resulting packet-loss problems, we use prediction based
compensation schemes from (Grüne et al. [2009a];Grüne et al. [2009b]). In-
stead of a single input, a sequence of predicted future controls Us(ts) =
{u(ts), u(ts + 1), ..., u(ts + lp), ..., u(ts + lp max)} is submitted and imple-
mented at a buffer device with length lp max in the actuator. The buffer
device is used to store the newest control sequence Us(ts) transmitted suc-
cessfully from MPC to actuator at sampling time ts ∈ =. At time instant
t ∈< ts, ts + lp(ts) >, the packet loss occurs, and control action u(t) corre-
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Figure 4.2: Schematic representation of a hybrid automaton

sponding to the current sampling time from control sequence Us(ts) in the
buffer device will be applied to the actuator. This process is considered as
a switched system with schematic representation of a hybrid automaton in
Fig.4.2.

Choose an appropriate output feedback predictive control algorithm as
the controller of NCS as follows

u(t+ k) = u(t+ k|t) =
Nu∑
j=k

Fkj [y(t+ j|t)− w(t+ j|t)] (4.9)

where the prediction is carried out over control horizon Nu and prediction
horizon Ny = Nu. The input control is constrained by (3.5). The main goal is
to design a predictive controller (4.9) with input constraints so that, control
action u(t) from control sequence Us(ts) robustly stabilizes NCS and ensures
input constraints and guaranteed cost of the cost function (over the infinite
optimization horizon).

Mechanism of the hybrid automaton can be represented as the following.
At sampling time t := ts(lp = 0), model predictive control MPClp defined
as (3.7) is used to compute control sequence Us(t). If no packet loss at t+ 1,
MPC0 is applied. Otherwise, jump to MPC1, it means that one packet is
lost. Generally, at sampling time t := ts + lp(1 ≤ lp ≤ lp max), MPClp is
applied. If no packet loss at t+ 1, jump to MPC0. Otherwise, if lp < lp max,
jump to MPClp+1 and it means that lp + 1 packets are lost.

The predicted states of MPClp for the instant t+ k, k = {0, ..., Nu − 1},
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are given by

x(t+ k + 1|t) = A(ξ)x(t+ k|t) +B(ξ)u(k)

u(k) =

{
u(ts + lp + k) if 0 ≤ k ≤ Nu − lp − 1
u(ts +Nu − 1) if Nu − lp ≤ k ≤ Nu − 1

(4.10)

The closed-loop model prediction of MPClp is obtained as follows

Acf (ξ, lp)xf (t+ 1) = Acx(ξ, lp)x(t) (4.11)

where Acf (ξ, lp) = Af (ξ)−Bf (ξ)FlpfCf , Acx(ξ, lp) = Ax(ξ) +Bf (ξ)FlpxC.
In the following theorem the novel formulation of robust stability condi-

tion is developed, which provide LMI for MPC robust stability analysis and
BMI for MPC robust design.

Theorem 4.3 Control sequence Us(ts) robustly stabilizes the NCS with loss
packet process ` and ensures the guaranteed cost J0, input constraints if and
only if there exist matrices Hlp ∈ RnNy×n(Ny+1), Plp(ξ) = PTlp (ξ) > 0, gain

matrices Flp , and scalars λ
lp
id
≥ 0 such that the following bilinear matrix

inequality (BMI)

W
ip
lp

(ξ) = D
ip
lp

(ξ) +ATm(ξ, lp)H
ip
lp

+H
ip
lp

T
Am(ξ, lp) +Q+ CTmF

T
lp
RFlpCm ≤ 0

(4.12)
and the following linear matrix inequalities (LMIs)[

P̂lp(ξ) ∗
DidFlpCm λ

lp
id

]
≥ 0 ; λ

lp
id
∈
〈

0,
u2
i

θ

〉
(4.13)

hold for all id = i + (j − 1)m, i = {1, ...,m}, j = {1, ..., Nu − lp}, ip =

{0, lp+1}, and 0 ≤ lp ≤ lp max; where D
ip
lp

(ξ) = diag{−Plp , Pip−Plp , ..., Pip−
Plp , Pip}(ξ) ∈ Rn(Ny+1)×n(Ny+1), Am(ξ, lp) = [Acx(ξ, lp) −Acf (ξ, lp)], P̂lp(ξ)

= diag{Plp(ξ), ..., Plp(ξ)} ∈ Rn(Ny+1)×n(Ny+1).

Note that (4.12) is affine to ξ. If W
ip
lpj
≤ 0, j = {1, .., N} is feasible with

respect to unknown Plpj = PTlpj > 0, Pipj = PTipj > 0, H
ip
lp

, and Flp for all

0 ≤ lp ≤ lp max, ip = {0, lp + 1}, then the control sequence Us(ts) guarantees
robust stability and guaranteed cost for NCS with predictive control (4.9)
within the convex set. Therefore, BMI robust stability condition ”if and only
if” in (4.12) reduces to sufficient condition.
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5 Conclusions

5.1 Contribution summary

The initial goal conducting this work was to investigate the robust control
theories to design robust output feedback controller for uncertain system in
the fields of decentralized control, model predictive control, and networked
control system. Parameter Dependent Quadratic Stability criterion is used
to synthesise robust controller with quadratic guaranteed cost for the poly-
topic description of the uncertain system. Based on the formulation of the
dissertation’s main objectives in Chapter 1, we can state the follows:

Objective 1 - Design of robust decentralized controller for large-scale sys-
tem by using subsystem approach in state space was realized in Chapter 2. A
new approach to design a robust decentralized output feedback PI controller
for complex large-scale systems with a state decentralized structure was de-
veloped. The proposed design method is based on the Generalized Gershgorin
Theorem and the LMI method to design robust PI controller guaranteeing
feasible performance achieved in subsystems for the full system and there-
fore the proposed method excludes limit of system order in BMI solution.
A robust decentralized PI controller has been designed using the polytopic
description of the uncertain system and applying the robust optimal control
design procedure including cost function to state-space subsystems generated
in each vertex of the polytopic uncertainty domain. The main advantage of
the proposed approach is that the order of the PI design procedure reduces
to the order of the particular subsystem. Although the design procedure
does not guarantee the stability of complex system, but it gives the way how
the robust stability of complex system can be obtained. The effectiveness of
the proposed method was illustrated by two examples such as three boiler-
turbine subsystems and four cooperating DC motors. Based on numerical
calculation and simulation results of these examples, the proposed control
design scheme is believed to indicate the alternative in decentralized control,
which can bring useful results.

Objective 2 - Design of robust output feedback model predictive control
with input constraints to explicitly incorporate plant model uncertainty was
realized in Chapter 3. An explicit MPC which contains all the possible com-
binations of uncertainty in the original-plant polytopic model, was employed.
This MPC provides the robust stability guaranteeing for the uncertain plant
model and uncertain model prediction. Additionally, an integrator is added
to the controller design procedure to reject disturbances and maintain the
process at the optimal operating conditions or setpoints. Two input con-
straints approaches such as heuristic one and invariant set are concerned.

19



The main contribution is that all the timedemanding computations of the
output feedback gain matrices are realized off-line. The actual control value
is obtained through simple on-line computation of scalar parameters and
already computed feedback gain matrices. The numerical calculations and
simulation results of two examples such as the double integrator and labora-
tory 3D-Crane plant were presented and they showed that, the effectiveness
of the proposed method, namely its ability to cope with robust stability,
successfully to force disturbance rejection and setpoint tracking and input
constraints without complex computational load, were obtained.

Objective 3 - Design of robust controller for uncertain NCS with time-
varying network-induced delay was realized in Section 4.1 of Chapter 4. Two
new approaches such as complete LKF and discretized LKF to design ro-
bust output feedback PID controllers achieving a guaranteed cost such that
the NCSs can be stabilized for all admissible polytopic-type uncertainties
and time-varying delays with less conservatism than previous works were
presented. In the discretized LKF approach, a partitioning scheme of time-
varying delay and IQC are used to overcome the conservatism in the output
feedback design procedures. The effectiveness as well as conservatism of al-
gorithm was showed by comparing results obtained by the discretized LKF
method, where controller has been designed for partitioning of time-delay
Nd = {1, 2, 3, 5} with the complete LKF method on 1000 randomly gener-
ated examples. The numerical calculation results show that increasing the
number of parts Nd, to which the time-delay interval is divided, reduces the
conservatism of robust stability condition, therefore the number of successful
controller designs increases with the increased Nd.

Objective 4 - Design of robust predictive controller for uncertain NCS with
arbitrary packet-loss was realized in Section 4.2 of Chapter 4. A robust out-
put feedback linear model predictive control scheme over a network with
double-sided packet loss was implemented. This one is built based on the
combination of compensation mechanism and robust model predictive con-
trol design approach in Chapter 3. As a result, networked predictive control
systems with loss packet are modeled as switched linear systems and the
robust stability condition of networked model predictive control with packet
dropout is established by using the theory of switched systems. The proposed
method was evaluated by a numerical example-uncertain double integrator
controlled over network. Networked MPC with 8-ahead steps prediction was
investigated and it means that up to 87.5% of the packets can be lost during
the network transmissions. Simulation was realized in time interval 100[s],
and in this simulation interval time, packet-loss process was generated ran-
domly with 66.318% of packets lost. The simulation results showed that,
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the NCS was robustly stable and guaranteed input constrained for model
uncertainty.

Finally, we would like to conclude that, all predefined goals of dissertation
are obtained and the results presented in dissertation were published in many
journals and conferences. For more details, see Publications by author.

5.2 Future work

Besides the encouraging results, there are still some open questions as well
as interesting ideas raised during the course of our research but have not
exploited further in the scope of this dissertation for some reasons.

Enhancing feasibility of optimization problem solution

One of the most important issues raised is the feasibility or convergence of
optimization problem solution due to its size. Since the controller designs
require numerical solution of BMI, and the size of the optimization problem
significantly increases with increased time-delay partition Nd or number of
packet loss lp or number of step prediction Ny (Nu), this limits the choice
of increasing Nd; lp;Ny (Nu). As the result, it will restrict the effectiveness
of proposed design procedures especially for large-scale systems. Based on
our view, solution of this issue can be realized by reforming the optimization
problem in the form of LMI instead of BMI; and in the case of large-scale
system, a combining this LMI optimization problem with appropriate decen-
tralized strategy (subsystem approach) is required.

Robust distributed MPC

Our robust MPC was typically implemented in a centralized way. The com-
plete system was modeled, and all the control inputs were computed in one
optimization problem. In large-scale applications, such as power systems, wa-
ter distribution systems, traffic systems, manufacturing systems, networked
systems and economic systems, it is useful to have distributed or decentral-
ized control schemes, where local control inputs are computed using local
measurements and reduced-order models of the local dynamics. Therefore, it
would be interesting to implement the robust MPC in a decentralized (dis-
tributed) fashion.

Multiple-packet transmission in NCS

In the dissertation, we assumed that, the capacity of communication network
is unlimited. Therefore, the control sequence is encapsulated into a single
packet and transmitted over network. However, the practice is the bandwidth
and packet size constraints of the network and thus the data may be split into
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separate packets before transmitting, so-called multiple-packet transmission.
This property makes synthesis of robust controller for NCS with packet-loss
by using prediction based compensation schemes more challenging.
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V. Veselý and R. Bars. Stable output feedback model predictive control design:
Lmi approach. Archives of Control Sciences, 18:385–394, 2008. 4
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